4 Engineering Example 2

4.1 Divergence of a magnetic field

Introduction

A magnetic field B ̲ must satisfy ̲ B ̲ = 0 . An associated current is given by:

I ̲ = 1 μ 0 ( ̲ × B ̲ )

Problem in words

For the magnetic field (in cylindrical polar coordinates ρ , ϕ , z )

B ̲ = B 0 ρ 1 + ρ 2 ϕ ̂ ̲ + α ̲

show that the divergence of B ̲ is zero and find the associated current.

Mathematical statement of problem

We must

  1. show that ̲ B ̲ = 0
  2. find the current I ̲ = 1 μ 0 ( ̲ × B ̲ )

Mathematical analysis

  1. Express B ̲ as ( B ρ , B ϕ , B z ) ; then ̲ B ̲ = 1 ρ ρ ( ρ B ρ ) + B ϕ ϕ + ρ B z z = 1 ρ ρ ( 0 ) + ϕ B 0 ρ 1 + ρ 2 + ρ z ( α ) = 1 ρ [ 0 + 0 + 0 ] = 0  as required.
  2. To find the current evaluate

    I ̲ = 1 μ 0 ( ̲ × B ̲ ) = 1 μ 0 1 ρ ρ ̂ ̲ ρ ϕ ̂ ̲ ̲ ρ ϕ z B ρ ρ B ϕ B z = ρ ̂ ̲ ρ ϕ ̂ ̲ ̲ ρ ϕ z 0 B 0 ρ 2 1 + ρ 2 α = 1 μ 0 ρ 0 ρ ̂ ̲ + 0 ρ ϕ ̂ ̲ + B 0 ρ ρ 2 1 + ρ 2 ̲ = 1 μ 0 ρ B 0 1 + 4 ρ 3 ( 1 + ρ 2 ) 2 ̲

Interpretation

The magnetic field is in the form of a helix with the current pointing along its axis (Fig 22). Such an arrangement is often used for the magnetic containment of charged particles in a fusion reactor.

Figure 22:

{ The magnetic field forms a helix}

Example 24

A magnetic field B ̲ is given by B ̲ = ρ 2 ϕ ̂ ̲ + k ̲ . Find ̲ B ̲ and ̲ × B ̲ .

Solution

̲ B ̲ = 1 ρ ρ 0 + ϕ ρ 2 + z k ρ = 1 ρ 0 + 0 + 0 = 0

̲ × B ̲ = 1 ρ ρ ̂ ̲ ρ ϕ ̂ ̲ ̲ ρ ϕ z B ρ B ϕ B z = 1 ρ ρ ̂ ̲ ρ ϕ ̂ ̲ ̲ ρ ϕ z ρ 2 0 k

= 0 ̲

All magnetic fields satisfy ̲ B ̲ = 0 i.e. an absence of magnetic monopoles. There is a class of magnetic fields known as potential fields that satisfy ̲ × B ̲ = 0 ̲

Task!

Using cylindrical polar coordinates, find ̲ f for f = ρ 2 z sin ϕ

ρ [ ρ 2 z sin ϕ ] ρ ̂ ̲ + 1 ρ ϕ [ ρ 2 z sin ϕ ] ϕ ̂ ̲ + z [ ρ 2 z sin ϕ ] ̲ = 2 ρ z sin ϕ ρ ̂ ̲ + ρ z cos ϕ ϕ ̂ ̲ + ρ 2 sin ϕ ̲

Task!
  1. Using cylindrical polar coordinates, find ̲ f for f = z sin 2 ϕ

ρ [ z sin 2 ϕ ] ρ ̂ ̲ + 1 ρ ϕ [ z sin 2 ϕ ] ϕ ̂ ̲ + z [ z sin 2 ϕ ] ̲ = 2 ρ z cos 2 ϕ ϕ ̂ ̲ + sin 2 ϕ ̲

Task!

Find ̲ F ̲ for F ̲ = ρ cos ϕ ρ ̂ ̲ ρ sin ϕ ρ ̂ ̲ + ρ z ̲

i.e. F ρ = ρ cos ϕ , F ϕ = ρ sin ϕ , F z = ρ z

  1. First find the derivatives ρ [ ρ F ρ ] , ϕ [ F ϕ ] , z [ ρ F z ] :

    2 ρ cos ϕ , ρ cos ϕ , ρ 2

  2. Now combine these to find ̲ F ̲ :

    ̲ F ̲ = 1 ρ ρ ( ρ F ρ ) + ϕ ( F ϕ ) + z ( ρ F z ) = 1 ρ ρ ( ρ 2 cos ϕ ) + ϕ ( ρ sin ϕ ) + z ( ρ 2 z ) = 1 ρ 2 ρ cos ϕ ρ cos ϕ + ρ 2 = cos ϕ + ρ
Task!

Find ̲ × F ̲ for F ̲ = F ρ ρ ̂ ̲ + F ϕ ϕ ̂ ̲ + F z ̲ = ρ 3 ρ ̂ ̲ + ρ z ϕ ̂ ̲ + ρ z sin ϕ ̲ . Show that the results are consistent with those found using Cartesian coordinates.

  1. Find the curl ̲ × F ̲ :

    1 ρ ρ ̂ ̲ ρ ϕ ̂ ̲ ̲ ρ ϕ z ρ 3 ρ 2 z ρ z sin ϕ = ( z cos ϕ ρ ) ρ ̂ ̲ z sin ϕ ϕ ̂ ̲ + 2 z ̲

  2. Find F ̲ in Cartesian coordinates:

    Use ρ ̂ ̲ = cos ϕ i ̲ + sin ϕ j ̲ , ϕ ̂ ̲ = sin ϕ i ̲ + cos ϕ j ̲ to get F ̲ = ( x 3 + x y 2 y z ) i ̲ + ( x 2 y + y 3 + x z ) j ̲ + y z k ̲

  3. Hence find ̲ × F ̲ in Cartesian coordinates:

    ( z x ) i ̲ y j ̲ + 2 z k ̲

  4. Using ρ ̲ ̂ = cos ϕ i ̲ + sin ϕ j ̲ and ϕ ̲ ̂ = sin ϕ i ̲ + cos ϕ j ̲ , show that the solution to part 1. is equal to the solution for part 3.:
Exercises
  1. For F ̲ = ρ ρ ̂ ̲ + ( ρ sin θ + z ) ϕ ̂ ̲ + ρ z ̲ , find ̲ F ̲ and ̲ × F ̲ .
  2. For f = ρ 2 z 2 cos 2 ϕ , find ̲ × ( ̲ f ) .
  1. 1 + cos θ + ρ , ρ ̂ ̲ z cos θ ϕ ̂ ̲ + ( 2 ρ sin ϕ + z ) ̲
  2. 0 ̲