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Welcome

This course is designed to refresh your knowledge of maths to get you ready to use
calculus in your course. There is no right or wrong way to use it. Each section includes
written notes, a video (with the same content as the notes) and practice questions. It’s
chunked into bitesized sections to allow you make progress in 10 min windows. You may
like to try the questions first and then just go back to the notes if you get stuck. Feel
free to start anywhere you like.

Warning

The videos are hosted on the University’s Panopto Re:view server. You will have
to login to watch them - it may also force a pop-up window.

This is a work in progress, the videos are appearing and things may change! If you find
a mistake please email edrs20@bath.ac.uk and good luck!

Let me know what you think

If you’ve got some spare time to fill in this survey about this resource, I’d love to
know what you think of it.

Zero to Hero © 2023 by Ed Southwood, Skills Centre, University of Bath is licensed
under Attribution-NonCommercial-ShareAlike 4.0 International.
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1 Negative numbers

On a number line negative numbers are typically written to the left of zero and have
values smaller than zero. Negative numbers are tricky. Often when an error creeps
into a calculation it’s due to a misplaced minus sign, they are a source of problems for
everyone - don’t worry if they seem tricky, they have only relatively recently lost their
mysteriousness. The evidence of humans counting dates from 35, 000BCE yet as recently
as 1758 British mathematician Francis Maseres said that negative numbers…

“… darken the very whole doctrines of the equations and make dark of the things which
are in their nature excessively obvious and simple”.

1.1 Multiplication and Division

When multiplying and dividing using negative numbers the answer will be the same as
the equivalent calculation with positive numbers only, but, you may have to change the
sign - to either positive or negative. The rules for deciding if the answer is positive or
negative are below:

Note

• positive × positive = positive
• negative × positive = negative
• positive × negative = negative
• negative × negative = positive

Notice that the order is not important. Here are some examples:

−2 × 3 = −6

10 × −5 = −50

−4 × −6 = 24

If you have more that two numbers to multiplying you can just count the number of
negative numbers and apply the following rule:

3



1 Negative numbers

Note

• If the total number of negative numbers is even the answer is positive.
• If the total number of negative numbers is odd the answer is negative.

Here’s a longer example:
−2 ×−2 × −2 × −2 = 16

since there are even number of negatives in the question the answer will be positive.

Since division and multiplication are so closely related, division works in exactly the
same way. For example:

−3 ×−6
−9 = −2

.

You can practice these techniques with the following questions. You can refresh the
question to change the numbers. Try them as much as you like.

1.1.1 But why?!!?

Building a physical idea of a negative number is tricky. For example thinking of 2×3 as
two lots of 3 things is fine, but what does −2×−3 even mean? Hopefully but looking at
the pattern below it will be become clear that our definition of what happens with two

4
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1.2 Addition and subtraction

negative numbers is the only one that makes sense. Consider extending the two times
table into negative numbers.

3 × 2 = 6
2 × 2 = 4
1 × 2 = 2
0 × 2 = 0
−1 × 2 = −2
−2 × 2 = −4
−3 × 2 = −6

Now with the negative two times table.

3 × −2 = −6
2 × −2 = −4
1 × −2 = −2
0 × −2 = 0
−1 × −2 = 2
−2 × −2 = 4
−3 × −2 = 6

Our definition fits the pattern. Horrah!

1.2 Addition and subtraction

It helps to think about addition and subtraction of negative numbers on a number line.
We can think about positive numbers as arrows pointing forwards, shifts to the right
from zero, and negative numbers as arrows backwards, shifts to the left. Add to this the
idea that addition and subtraction is then combining these arrows. When you add two
numbers you place them one after another, the end of the second arrow on the tip of
the first. With subtraction you reverse the direction of the second arrow and then place
them together just like addition.

5



1 Negative numbers

Consider the following examples:

• 3 − 5 = −2 can be thought of as: start at three then move five back to the left.
• −4 + 1 = −3, start at −4 then move one to the right.
• 5 + −2 = 3, start at 5 then add on a shift of 2 to the left.
• 1−−3 = 4, start at 1 then reverse a shift of 3 to the left (I know it seams bonkers!).

The double negative cancels out to give a calculation equivalent to 1 + 3 = 4.

Warning

It’s tempting to cling on to the idea that two negatives make a positive when it
comes to addition and subtraction. But consider the following statements, they
are all correct, but imagine how easy it is to be confused if you just apply the two
negatives make a positive rule.

• −3 − 5 = −8
• −10 − −4 = −6

You can practice these techniques with the following questions. The numbers change
each time to try them as much as you like.

6



1.2 Addition and subtraction
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2 Algebraic expressions

Algebraic expressions are just statements about numbers. However, letters are used as
place holders for some of the numbers. There are many reasons this is useful, it could
be because we would like to uncover the structure of something, or, because we don’t
know the specific numbers to use yet.

2.1 Substitution

In order to evaluate an algebraic expression we have to substitute the letters for numbers.
After the numbers are written in place of the letters we must take care to evaluate the
statement in the correct order. BIDMAS is often used to remember the order:

• Brackets Work out anything in brackets first.
• Indices Powers are next, something like 32.
• Division and Multiplication these two have equal priority. If there is a ‘tie’

work left to right. However if you see a large division they have implicit brackets
in them. For example 2+10

2×3 should be thought of as (2+10)
(2×3) .

• Addition and Subtraction like multiplication and division these are equal pri-
ority. If there is a tie work left to right.

One more thing to know before we start making substitutions is that the multiplication
symbol × is often not used in algebraic expressions. Letters and numbers that are next
to each other are multiplied together. For example 3𝑎 means 3 × 𝑎. You can show two
numbers multiplied together like this 2 × 3 = (2)(3) = 6.

Here are some examples:

If 𝑎 = 2 and 𝑏 = −3 then we can evaluate 5𝑎 + 4𝑏 like this:

5(2) + 4(−3)

When things are written next to each other this means multiplication.

5 × 2 + 4 × −3

Using BIDMAS to do the multiplication first and remembering that a positive number
multiplied by a negative gives a negative number.

10 + −12 = −2

9



2 Algebraic expressions

Substituting 𝑛 = 3 and 𝑥 = 2 into 5𝑥𝑛. By replacing the letters with numbers we have:

5(2)3

Remembering that when things are next to each other it means multiplication, which
gives:

5 × 23

Following BIDMAS we must deal with the powers first. Since 23 = 2 × 2 × 2 = 8 we
have:

5 × 8 = 40

Finally consider 2𝑝+𝑞
𝑟 where 𝑝 = 6, 𝑞 = 3 and 𝑟 = 5. Replacing the letters with numbers

we have:
2(6) + 3

5 = 2 × 6 + 3
5

Remembering that there are implicit brackets in fractions, the numerator needs to be
evaluated first.

(2 × 6 + 3)
5 = (12 + 3)

5 = 15
5

Now the fraction can be evaluated. 15
5 = 3

You can practice these techniques with the following questions. The numbers change
each time to try them as much as you like.

10
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2.2 Simplification

2.2 Simplification

Algebraic expressions are made up of terms. Similar terms can be combined to create a
simplified expression, this processes is called collecting like terms. For example 2𝑎 + 3𝑎
can be simplified to 5𝑎 by collecting the 𝑎 terms. Here’s another example with a bit
more going on:

5𝑥 + 7𝑦 − 3𝑥 + 3𝑦 =
𝑥 terms
⏞5𝑥− 3𝑥+

𝑦 terms
⏞7𝑦 + 3𝑦 = 2𝑥 + 10𝑦

Notice that the like terms were grouped first to make it easier to simplify. Also, each
term owns the positive or negative symbol ahead of it.

Terms can be more complex too. Although it’s tempting to find something to simplify
there are no like terms in this expression: 3𝑥𝑦 + 6𝑥2 + 2𝑥 − 5𝑦. Only the exact same
multiples can be simplified. For example:

6𝑥2 + 2𝑥 − 5𝑥2 − 8𝑥 =
𝑥2 terms

⏞⏞⏞⏞⏞6𝑥2 − 5𝑥2 +
𝑥 terms
⏞2𝑥− 8𝑥 = 𝑥2 − 6𝑥

Notice that the two different types of term are 𝑥 and 𝑥2. Also, I could have written 1𝑥2

but we normally don’t bother with the 1. It’s also important to note that capitalisation
matters; 𝑥 is different from 𝑋.

Take care when simplifying multiples of different letters 3𝑥𝑦+5𝑦𝑥 can be simplified. This
is because the order of multiplication doesn’t matter so 3𝑥𝑦 + 5𝑦𝑥 = 3𝑥𝑦 + 5𝑥𝑦 = 8𝑥𝑦.
Terms are normally written in alphabetical order with the highest powers first.

Key point:

• 𝑥 × 𝑥 = 𝑥2

• 𝑥 + 𝑥 = 2𝑥
• 𝑥 is different from 𝑋
• 1𝑥 is written as 𝑥

Have a go at simplifying with these questions.

11



2 Algebraic expressions
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3 Expressions with brackets

Dealing with algebraic expressions containing brackets is a useful skill. This section
looks at removing brackets by expanding and adding brackets back in by factorising.

3.1 Expanding

3.1.1 Single brackets

Expanding a bracket in an algebraic expression is an example of the distributive law.
You probably are already familiar with that law. Here is an example of how the law
could be used to work out 6 × 15 using a mental method.

6 × 15 = 6 × (10 + 5)
= 6 × 10 + 6 × 5
= 60 + 30
= 90

The same procedure is followed with an algebraic expression.

6(2𝑥 + 5) = 6 × (2𝑥 + 5)
= 6 × 2𝑥 + 6 × 5
= 12𝑥 + 30

The number of terms within the bracket isn’t limited to two. For example:

𝑥(𝑦 + 3𝑥 − 5) = 𝑥 × (𝑦 + 3𝑥 − 5)
= 𝑥 × 𝑦 + 𝑥 × 3𝑥 + 𝑥 × −5
= 𝑥𝑦 + 3𝑥2 − 5𝑥

Finally, another common pattern is to have a negative sign before a bracket. This
just means everything inside the bracket is multiplied by −1. It just flips the sign of
everything in the brackets.

13



3 Expressions with brackets

−(3 − 𝑥) = −1 × (3 − 𝑥)
= −1 × 3 + −1 × −𝑥
= −3 + 𝑥

Here are some practice questions.

3.1.2 Expanding pairs of brackets

This will be covered in Quadratics.

3.2 Factorising

The reverse of expanding brackets is called factorising. We look for a common factor in
each term to take outside of the bracket.

3.2.1 Factorising - single brackets

For each term in the expression look for a common factor. We can then write this in
front of the bracket so when you expand the bracket the original expression is returned.
For example:

14
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3.2 Factorising

12𝑥2 − 15𝑥 = 3𝑥 × 4𝑥 + 3𝑥 × −5
= 3𝑥(4𝑥 − 5)

Notice that 3𝑥 is a factor of both 12𝑥2 and −15𝑥. Also, if we expand our answer we
should get back to where we started from.

Here are some practice questions.

3.2.2 Factorising - pairs of brackets

This will be covered in the Quadratics section.

15
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4 Fractions

Fractions can be written in two ways:

• as decimals fractions, for example 0.5, 0.25 and 0. ̇3.
• as vulgar fractions, the following fractions have the same values as the examples

above, 1
2 , 1

4 and 1
3 . Vulgar fractions consist of two parts. The top, or numerator,

and the bottom, the denominator.

Vulgar fractions are useful in algebra. The next section looks at some techniques for
dealing with them.

4.1 Simplifying

Fractions can be cancelled down or simplified by dividing the numerator and denominator
by a common factor i.e. we look for a number that goes into both the top and the bottom
of the fraction. For example:

18
24 = 3 × 6

4 × 6
= 3 × �6

4 × �6
= 3

4

The same can be done with algebraic fractions.

4𝑥𝑦
6𝑥 = 2𝑦 × 2𝑥

3 × 2𝑥
= 2𝑦 ×��2𝑥

3 ×��2𝑥
= 2𝑦

3

Sometimes you’ll need to factorise expressions in the fraction in order to cancel it down.

17



4 Fractions

10𝑥2 + 5𝑥
4𝑥 + 2 = 5𝑥 × 2𝑥 + 5𝑥 × 1

2 × 2𝑥 + 2 × 1
= 5𝑥(2𝑥 + 1)

2(2𝑥 + 1)
= 5𝑥�����(2𝑥 + 1)

2�����(2𝑥 + 1)
= 5𝑥

2
Here are some practice questions.

Warning!

It is tempting to want to make cancellations like this:

2𝑥2

3𝑥 + 7 = 2𝑥�𝑥
3�𝑥 + 1

= 2𝑥
3 + 7

= 2𝑥
10

= 𝑥
5

18
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4.2 Multiplication and division

However, please don’t do it, as it’s just plain wrong! Lets let 𝑥 = 3 and substitute
it into the original 2𝑥

3𝑥+7 and into incorrectly simplified version 𝑥
5 . If the algebra is

correct it should give the same answer.
We claim:

2𝑥2

3𝑥 + 7 = 𝑥
5

but if we substitute 𝑥 = 2 into both sides we get:

2(3)2
3(3) + 7 = (3)

5
2 × 9
9 + 7 = 3

5
18
16 = 3

5
9
8 = 3

5
Which is nonsense!

4.2 Multiplication and division

Multiplication and division of fractions is, thankfully, really easy!

4.2.1 Multiplication

For multiplication you simply multiply the different fractions numerators and denomi-
nators together. In other words the top of the first fraction with the top of the second
one and so on. After the multiplication you may be able to cancel down the fraction.
Just like this:

2
5 × 3

4 = 2 × 3
5 × 4

= 6
20

= 3 × 2
10 × 2

= 3 × �2
10 × �2

= 3
10 19



4 Fractions

Pro-tip

It is possible to cancel before multiplying. Here is the same example revisited:

2
5 × 3

4 = 2 × 3
5 × 4

= 2 × 3
5 × 2 × 2

= �2 × 3
5 × 2 × �2

= 3
10

This can be super useful when dealing with large numbers or complex algebraic
fractions.

4.2.2 Division

We can change a division into a multiplication by remembering keep, change, flip. We
keep the first fraction as it is. Change the division, ÷, symbol to a multiplication, ×,
and flip the last fraction - swap the places of the numerator and denominator. This is
called taking the reciprocal of the fraction. For example:

3
7 ÷ 5

2 = 3
7 × 2

5
= 3 × 2

7 × 5
= 6

35

4.3 Addition and subtraction

Addition and subtraction is easy if the denominators are the same. We just add the
numerators together and the denominators stays the same. For example:

2
5 + 1

5 = 2 + 1
5

= 3
5

If the denominators are different we must make equivalent fractions with a common
denominators first. Finding a common denominator is like simplification, or cancelling
down, but in reverse.

20



4.3 Addition and subtraction

If we want to add 2
3 and 2

9 for example, we want to rewrite the first fraction so that it
has 9 as the denominator. To do this, we multiply the top and bottom of the fraction
by 3 (Remember to multiply both the numerator and denominator by 3 to make sure
the fractions are equivalent!) :

2
3 + 2

9 = 2 × 3
3 × 3 + 2

9
= 6

9 + 2
9

= 6 + 2
9

= 8
9

21





5 Solving equations

When we work out the value of an unknown, say 𝑥, in an equation we say that we are
solving for 𝑥. To work out the value we are free to apply any mathematical operation
we like to the equation so long as we do the same to both sides.

Note: We can’t quite do any operation. Division by zero, ÷0, is not allowed as it is
undefined.

5.1 Linear equations

5.1.1 Single unknown

Keeping the idea of doing the same thing to both sides in mind lets solve the following
equation by undoing each operation with it’s inverse.

3𝑥 + 8 = 10
First subtract 8 from each side.

3𝑥 + 8 − 8 = 10 − 8
3𝑥 = 2

Now divide both sides by 3 to find the value of one 𝑥.

3𝑥
3 = 2

3
𝑥 = 2

3

The nice thing here is that we can leave the answer as 2
3 . No need to find a decimal

fraction if we don’t need to.

Solve the following equations by applying the same operation to both sides. Remember
the questions come with full solutions, so, if you get stuck have a look at the answers
and then try a different one.

23



5 Solving equations

5.1.2 Unknown on both sides

If the unknown appears twice in an equation collect the unknown like terms first and
then solve as before.

Given 4𝑦
𝑦−9 = −2, we can multiply both sides by (𝑦 − 9) to get rid of the fraction, then

get all the 𝑦s on one side, then finally solve as before.

4𝑦
𝑦 − 9 = −2

4𝑦
𝑦 − 9 × (𝑦 − 9) = −2 × (𝑦 − 9)
4𝑦

���𝑦 − 9 ×����(𝑦 − 9) = −2 × 𝑦 − 2 × −9

4𝑦 = −2𝑦 + 18
4𝑦 + 2𝑦 = −2𝑦 + 18 + 2𝑦

6𝑦 = 18
6𝑦
6 = 18

6
𝑦 = 324

https://numbas.mathcentre.ac.uk/question/90637/equations-linear-equations-1a-rational-answers/embed/?token=8b0eebe4-9011-49a1-a3aa-d0a1298634be


5.2 Inequalities

Note

• To solve equations do the same thing to both sides.
• If the unknown appears twice - collect like terms first.

Have a go at some questions. You’ll need a pen and paper to work these out.

5.2 Inequalities

Solving inequalities works just like solving a normal equation except when you divide or
multiply by a negative number the inequality symbol changes direction. Here are some
examples.

Addition and subtraction work.

1 < 2
1 + 5 < 2 + 5

6 < 7
✓
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5 Solving equations

1 < 2
1 − 4 < 2 − 4

−3 < −2
✓

Remember −3 is less than −2 since it is further to the left on a number line. In other
words −3 is more negative than −2.

Multiplication and division work as expected with positive numbers.

4 < 6
4 × 2 < 6 × 2

8 < 12
✓

4 < 6
4 ÷ 2 < 6 ÷ 2

2 < 3
✓

We need to be careful when multiplying and dividing by negative numbers.

4 < 6
4 × −2 < 6 × −2

−8 ≮ −12
−8 > −12

Note

Remember the following key point when using inequalities:
When multiplying or dividing by a negative number change the direction of the
inequality.

5.3 Simultaneous equations

Sometimes equations have more than one unknown. Take 𝑥+ 𝑦 = 4 for example. There
are infinitely many pairs of numbers, 𝑥 and 𝑦, that work for this. Take the following
pairs for example: 𝑥 = 1 and 𝑦 = 3, 𝑥 = −100 and 𝑦 = 104, and 𝑥 = 0.1 and 𝑦 = 3.9.
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5.3 Simultaneous equations

Pro-tip

These pairs of solutions are often given as co-ordinate pairs like (1, 3), (−100, 104)
and (0.1, 3.9). We’ll do more about co-ordinates later.

However, if I give you some more information, say 𝑥 = 𝑦, now there is only one solution,
namely 𝑥 = 2 and 𝑦 = 2. We can use the information in two equations together to find
the values that satisfy both equations.

5.3.1 Elimination method

The idea with this method is to combine the two equations to create a new equation
with only one variable in it.

4𝑥 + 2𝑦 = −6 (1)
−2𝑥 + 3𝑦 = 7 (2)

To get a solution for 𝑦, if we multiply equation (2) by 2 we will have two equations with
equal and opposite x-coefficients:

4𝑥 + 2𝑦 = −6
−4𝑥 + 6𝑦 = 14 (3)

If we add equation (1) to equation (3) this eliminates the 𝑥-terms, leaving us with one
equation in terms of 𝑦:

(2 + 6)𝑦 = −6 + 14
8𝑦 = 8
𝑦 = 1

To obtain a solution for 𝑥 we can substitute this 𝑦-value into either of our initial equations.
Using equation (1), we obtain:

4𝑥 + 2 × 1 = −6
4𝑥 + 2 = −6

4𝑥 = −8
𝑥 = −2

We can check our values for 𝑥 and 𝑦 by substituting them into equation 2.
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5 Solving equations

−2𝑥 + 3𝑦 = 7
−2 × −2 + 3 × 1 = 7

4 + 3 = 7

Which works out!

You can try other examples in the exercise below. Sometime you may have to multiply
both of your starting equations in order to get the same amount of one variable. Also,
don’t worry if you have eliminated the other variable - it doesn’t matter which you get
rid of first, you should get the same answer in the end.

5.3.2 Substitution method

It is also possible to re-arrange one equation and substitute it into the other. This
method will be covered in the Quadratics section.
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6 Reading mathematics

This section looks at common notation used when writing mathematics using formal
notation - read it now or come back to it once you’ve done a bit of real maths. You could
even use it as a glossary, come back to it and look stuff up if you need to.

Sometimes looking at a piece of mathematics can feel like looking at another language.
If you feel that way don’t worry, that’s normal. It’s worth remembering these things:

• Written mathematics is dense. A lot of concepts can be expressed with very
few symbols. Don’t worry if it takes you a while to understand what they mean -
that’s totally normal. It’s also a good idea to get a pen and paper out and play
with the concepts being expressed.

• Understanding notation takes time. At first it can seem unnecessary and
needlessly complicated to introduce new symbols. However, once you’ve mastered
using these symbols you will gain a new perspective on the concepts your studying.

• Practice helps. Maths is an active subject, take the time to do some questions.
Don’t be content to read the notes and watch the videos. It’s also worth trying to
work through examples in your lecture notes alone, even if you’ve seen the answer
before, getting to it yourself will be good practice.

6.1 Common symbols

These symbols can turn up in mathematical explanations.

symbol meaning
∴ therefore
∵ because
≠ not equal

6.2 Sets

A set is a collection of elements (things). Sets are defined using curly brackets or braces
{ and }. Capital letters are often used as names of sets. Here is the set of the first 5
multiples of 3 (the first 5 numbers in the 3 times table):
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6 Reading mathematics

𝐴 = {3, 6, 9, 12, 15}

When sets are small it’s ok just to write down all the elements of the set. However if I
wanted to write down all of the multiples of 3 I would be in trouble. This is when we
use set builder notation and some new symbols.

𝐵 = {3𝑥|𝑥 ∈ ℕ}
This is read as: 𝐵 is the set of 3 times 𝑥 such that 𝑥 is a natural number. We’ve added
in a funny E, N and a line! Here’s what they mean:

symbol meaning
∈ is a member of the set
| such that
ℕ the natural numbers 1, 2, 3, 4...

When reading this for the first time it is fine to try some values for 𝑥 and see what you
get. Explore the idea with pen and paper.

6.2.1 Common sets of numbers

The table below contains common sets you may see. Each lower set contains the one
above, i.e. the whole of ℕ is in ℤ.

symbol name example
ℕ the natural numbers positive whole numbers

1, 2, 3, 4..., this sometimes
includes zero

ℤ the integers positive and negative
whole numbers

..., −2,−1, 0, 1, 2, ...
ℚ the rational numbers including fractions

−1
2 , 0, 1

2 , 1, ...
ℝ the real numbers now we introduce 𝑒 and 𝜋,

numbers with infinite and
non-repeating decimal

expansions
ℂ the complex numbers

√
−1 is now allowed, this

enables any polynomial to
be solved

30



6.2 Sets

Practice with your knowledge of sets with these questions:
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7 Straight line graphs

It is often useful to plot graphs of functions to gain an understanding of what they mean.
Straight line graphs are produced by linear equations. Linear equations like 𝑦 = 2𝑥 + 4
only have 𝑥 to the power of one only. Note: this doesn’t just apply to 𝑥, it could be
whatever variable you are using.

7.1 Coordinates

To build a picture of a function we work out pairs of values that satisfy the function.
Take for example 𝑦 = 1

2𝑥+1. If we choose values of 𝑥 we can work out the corresponding
𝑦 values.

𝑥 𝑦
0 1

2(0) + 1 = 1
1 1

2(1) + 1 = 1.5
2 1

2(2) + 1 = 2

Once we have these values they can be plotted on graph.
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7 Straight line graphs

The red dots show the points and the blue line shows the equation.

By working out some co-ordinates in the following question try to generate the correct
line.
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7.2 The formula for a straight line graph: 𝑦 = 𝑚𝑥 + 𝑐

7.2 The formula for a straight line graph: 𝑦 = 𝑚𝑥 + 𝑐

Straight line graphs can be defined by two quantities. The gradient, 𝑚, a measure of
how steep the line is, and the 𝑦 intercept, 𝑐, where the line crosses the 𝑦 axis.

7.2.1 The y intercept: 𝑐

The 𝑦 intercept is where line crosses the 𝑦 axis. We can quickly work out the co-ordinate
by substituting 𝑥 = 0 into the equation of a line, or, by noticing the constant term in
equation where 𝑦 = 𝑚𝑥 + 𝑐. Here are two examples:

For the line 𝑦 = 3𝑥 + 4, the 𝑦 intercept is at (0, 4) i.e. it crosses the 𝑦 axis at 4. We can
check this by substituting 𝑥 = 0 into the equation.

𝑦 = 3𝑥 + 4
= 3(0) + 4
= 3 × 0 + 4

𝑦 = 4

We need to be careful with the next example: 𝑦 + 2 = 5𝑥. It’s tempting to say that
the 𝑦 intercept is 2 but it’s not. First we must re-arrange the equation into the form of
𝑦 = 𝑚𝑥 + 𝑐. We’ll use the idea of doing the same thing to both sides again.

𝑦 + 2 = 5𝑥
𝑦 + 2 − 2 = 5𝑥 − 2

𝑦 = 5𝑥 − 2

Once we’ve done this we can see that the intercept is when 𝑦 = −2. Notice if we
substituted 𝑥 = 0 in the original equaiton we would get this answer too.

𝑦 + 2 = 5𝑥
𝑦 + 2 = 5(0)
𝑦 + 2 = 0

𝑦 = −2

Click on the graph below and play with the slider for 𝑐. Notice how the graph moves up
and down.
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7 Straight line graphs

7.2.2 The gradient: 𝑚

The gradient of a graph is a measure of how much steep the line is. The value of 𝑚 is
the change in the 𝑦 axis for each increase of 1 in the 𝑥 axis. So a gradient of 𝑚 = 2
would mean the 𝑦 values increase by 2 for each increase of 1 in the 𝑥 direction. This is
a positive gradient. Contrast this to a value of 𝑚 such as −0.5. This means for each
increase of 1 in the 𝑥 direction, the corresponding 𝑦 value decreases by 0.5 or a half.
This is a negative gradient.

The gradient can also be found by calculating the change in the 𝑦 direction divided
by the change in the 𝑥 direction. The graph below shows how you could calculate the
gradient of the line. The line shown has a gradient of 2

3 .

Pro tip

A change in a quantity is often represented by the Greek letter delta, Δ, so we can
rewrite 𝑚 as: 𝑚 = Δ𝑦

Δ𝑥
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7.2 The formula for a straight line graph: 𝑦 = 𝑚𝑥 + 𝑐

Click on the graph below and then change the value of 𝑚 with the slider. Notice how
the gradient changes but the 𝑦 intercept stays the same.
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7 Straight line graphs

Note

• 𝑚 is the gradient - the amount 𝑦 changes for an incease in 1 in the 𝑥 direction
• 𝑐 where the line crosses the 𝑦 axis
• 𝑚 and 𝑐 only make sense when the line is in the form 𝑦 = 𝑚𝑥 + 𝑐

Different notation - same thing

The equation of a straight line can be written using different letters. They all mean
the same thing. You may see:

• 𝑦 = 𝑚𝑥 + 𝑏
• 𝑦 = 𝑚𝑥 + 𝑦0
• 𝑦 = 𝑎𝑥 + 𝑏

Using your knowledge of 𝑦 = 𝑚𝑥+𝑐 try the following questions. Don’t be afraid to look
at the answers and then try a fresh set of questions if it seems tricky at first.
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8 Quadratics

Quadratics often appear in mathematics, they occur when you have something squared,
like 𝑥2. They produce ‘U’ shaped graphs that can be either way up (depending on the
sign of the 𝑥2 term), and, a powerful formula is known that we can use to solve them.

A plot of 𝑦 = 𝑥2 is below:

Quadratics can occur when we expand pairs of brackets, so I’ve included in this section.

8.1 Expanding pairs of brackets

Expanding a pair of brackets is much the same as a single bracket. However there is a
little more going on. Consider this example of a mental method to calculate 25 × 16.
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8 Quadratics

25 × 16 = (20 + 5) × (10 + 6)

=
20×(10+6)

⏞⏞⏞⏞⏞⏞⏞20 × 10 + 20 × 6+
5×(10+6)

⏞⏞⏞⏞⏞⏞⏞5× 10 + 5 × 6
= 200 + 120 + 50 + 30
= 400

With algebra it works in the same way:

(𝑎 + 𝑏)(𝑐 + 𝑑) = (𝑎 + 𝑏) × (𝑐 + 𝑑)

=
𝑎×(𝑐+𝑑)

⏞⏞⏞⏞⏞𝑎× 𝑐 + 𝑎 × 𝑑+
𝑏×(𝑐+𝑑)

⏞⏞⏞⏞⏞𝑏 × 𝑐 + 𝑏 × 𝑑
= 𝑎𝑐 + 𝑎𝑑 + 𝑏𝑐 + 𝑏𝑑

8.2 Factorising pairs of brackets

To factorise a quadratic in the form 𝑥2+𝑏𝑥+𝑐 into a pair of brackets like (𝑥+𝑝)(𝑥+𝑞),
we look to see if there are a pair of numbers 𝑝 and 𝑞 that add to get 𝑏 and multiply to
get 𝑐.

𝑝 + 𝑞 = 𝑏 𝑝 × 𝑞 = 𝑐

If we can find this pair of numbers we can factorise the quadratic. For example for the
quadratic 𝑥2 + 8𝑥 + 12 we can look at the factors of 12 to help us.

12 = 1 × 12, 1 + 12 = 13
12 = 2 × 6, 2 + 6 = 8
12 = 3 × 4, 3 + 4 = 7

Notice how 2 and 6 multiply to get 12 and add to get 8. This means we have the correct
pair. So we can now factorise the quadratic:

𝑥2 + 8𝑥 + 12 = (𝑥 + 2)(𝑥 + 6)

Here are some practice questions.
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8.3 Solving Quadratics

8.3 Solving Quadratics

Interestingly three things can happen when we solve a quadratic. There can be:

• two different values that satisfy the equation
• one repeated value
• no real values (only imaginary ones - and yes that is a thing!)

Here are some methods to solve quadratic equations.

8.3.1 Factorisation

We can solve some quadratics by factorisation. Take for example the following equation
𝑥2 + 8𝑥 = −12. To solve via factorisation we must first make it equal to zero and then
factorise. So we have:

𝑥2 + 8𝑥 = −12
𝑥2 + 8𝑥 + 12 = −12 + 12
𝑥2 + 8𝑥 + 12 = 0
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8 Quadratics

Now, with a little sense of deja vu (see the example in the previous section) we can
factorise our quadratic to get (𝑥 + 2)(𝑥 + 6) = 0. Notice that this is one bracket
multiplied by another to get the answer zero. When this happens, i.e. when you multiply
two numbers and the answer is zero, either the first number is zero or the second one is.
This means either 𝑥 + 2 = 0 or 𝑥 + 6 = 0. Solving these two mini-equations gives the
two solutions: either 𝑥 = −2 or 𝑥 = −6.

Pro tip

We can quickly get from the factorised quadratic to the solutions by flipping the
signs in the bracket.

Try some questions.

8.3.2 Quadratic Formula

For a quadratic equation of the form 𝑎𝑥2 + 𝑏𝑥+ 𝑐 = 0 we can use the quadratic formula
to find solutions for 𝑥.

𝑥 = −𝑏 ±
√
𝑏2 − 4𝑎𝑐
2𝑎
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8.3 Solving Quadratics

We can use the formula on the equation 𝑥2 − 4𝑥 + 2 = 0. In this example the values of
𝑎, 𝑏 and 𝑐 are:

• 𝑎 = 1 since 𝑥2 means 1 × 𝑥2

• 𝑏 = −4 notice how the negative sign is owned by the 𝑥 coefficient
• 𝑐 = 2 finially we just have 2

Substituting into the quadratic formula we have:

𝑥 = −(−4) ±√(−4)2 − 4(1)(2)
2(1)

= 4 ±
√
16 − 8
2

= 4 ±
√
8

2

It is possible to simplify the square roots in this answer to give 2 ±
√
2. So don’t be

surprised if your calculator gives you that answer.

Finally, we must deal with the ± symbol. This means do the calculation once using
addition, +, and another time using subtraction, −. This will give two possible answers
for 𝑥, given to 2 decimal places.

𝑥1 = 4 +
√
8

2
= 3.41

and

𝑥2 = 4 −
√
8

2
= 0.59

Pro tip

Notice the use of 𝑥1 and 𝑥2. It is common in maths to use subscript numbers to
show different particular values of the same variable. That’s all it’s doing 𝑥1 is just
a value for 𝑥 named 𝑥1 and 𝑥2 is just a value for 𝑥 named 𝑥2.
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8 Quadratics

8.4 Simultaneous equations

We are going to solve this type of equation by substitution i.e. substituting one equation
into another.

To solve a pair of simultaneous equations of this type we want to rearrange the linear
equation such that it is in terms of 𝑥 or 𝑦, which we can then substitute into the equation
with the quadratic terms. This will result in a quadratic equation in terms of one variable
only.

For the equations:

2𝑥 + 𝑦 = 1 (1)
3𝑥2 + 3𝑦2 = 4 (2)

we can rearrange equation (1) to make 𝑦 the subject:

𝑦 = 1 − 2𝑥 (3)

Substituting equation (3) into equation (2) we have:
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8.4 Simultaneous equations

3𝑥2 + 3𝑦2 = 4
3𝑥2 + 3(1 − 2𝑥)2 = 4

3𝑥2 + 3(1 − 2𝑥)(1 − 2𝑥) = 4
3𝑥2 + 3(1 − 4𝑥 + 4𝑥2) = 4
3𝑥2 + 3 − 12𝑥 + 12𝑥2 = 4

15𝑥2 − 12𝑥 − 1 = 0

Warning

There are a few things to be careful of here:

• (1 − 2𝑥)2 was expanded as a pair of brackets, (1 − 2𝑥)(1 − 2𝑥) before being
multiplied by 3.

• The finial stage was to make the equation equal zero so we can use the
quadratic formula.

Now we have an equation we can solve we can use the quadratic formula. To find values
of 𝑥. This gives two solutions 𝑥1 = −0.08 to 2 decimal places, and, 𝑥2 = −0.88 again to
2 decimal places.

Finally, since our equations for 𝑥 and 𝑦 we need to find corresponding 𝑦 values for each 𝑥.
The easiest way to do this is to use equation (3). This gives, 𝑦1 = 1.15 and 𝑦2 = −0.75.
Note, to maintain accuracy you’ll need to put your full values for 𝑥1 and 𝑥2 into equation
(3) and then round to 2 decimal places afterwards.

This gives two pairs of numbers for our answer. (𝑥1, 𝑦1) = (−0.08, 1.15) and (𝑥2, 𝑦2) =
(0.88,−0.75).

Pro tip

notice our answers look a lot like co-ordinates on a graph. That’s because they are.
If you plot the lines 2𝑥 + 𝑦 = 1 and 3𝑥2 + 3𝑦2 = 4 on the same graph (don’t do
this by hand! Use something like desmos) the places where the two lines cross will
correspond with our answers.

Here are some practice questions. Don’t forget you can graph them if it helps.
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8 Quadratics
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9 Indices

Indices is another word for powers. In this section we move beyond the idea that powers
are just repeated multiplications.

9.1 Index notation

Being comfortable moving between different ways to write powers helps when rearranging
algebra.

Note

• 𝑥0 = 1 except when 𝑥 = 0 then it’s undefined
• 𝑥−𝑛 = 1

𝑥𝑛

• 𝑥 1
𝑛 = 𝑛√𝑥

Here are some examples:

2−3 = 1
23 = 1

8
More generally.

𝑥−3 = 1
𝑥3

Anything to the power of zero is 1:
𝜋0 = 1

Remember good old 𝜋? From working stuff out about circles 𝜋 = 3.14159...
We can write square roots:

16 1
2 =

√
16 = ±4

Pro tip

When taking square roots remember there are two possible solutions. Since in the
above example 4 × 4 = 16 and −4 ×−4 = 16. So either answer is just fine.
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9 Indices

Here’s an example of a cube root.

8 1
3 = 3√8 = 2

9.1.1 Combinations, roots and powers

A roots and powers can be combined. If a number is raised to the power of a fraction
you find the root corresponding to the denominator and then raise it to the power of the
numerator. For example:

8 2
3 = ( 3√8)2 = (2)2 = 4

Cube root, because of the 3 in the denominator, then square the answer because of the 2
in the numerator. This sequence could be done the other way around, square first then
cube root, I choose this way since the numbers stay smaller.

9.1.2 Reciprocals

If you raise a number to the power of −1 you find it’s reciprocal (you flip it). For
example:

(2
3)

−1
= 3

2

9.1.3 But why?

Just like we did with negative numbers we can extend the idea of what a power means
by following a pattern. Here’s a pattern to justify 𝑥0 = 1 and 𝑥−𝑛 = 1

𝑥𝑛 .

103 = 10 × 10 × 10 = 1000
102 = 10 × 10 = 100
101 = 10 = 10
100 = 1 = 1

10−1 = 1
10 = 0.1

10−2 = 1
10 × 10 = 0.01

10−3 = 1
10 × 10 × 10 = 0.001
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9.2 Rules of indices

I’ll come back to the justification about square roots after the next section.

9.2 Rules of indices

There is a neat set of rules we can use when combining numbers with indices:

Note

• 𝑥𝑛 × 𝑥𝑚 = 𝑥𝑛+𝑚

• 𝑥𝑛 ÷ 𝑥𝑚 = 𝑥𝑛−𝑚

• (𝑥𝑛)𝑚 = 𝑥𝑛×𝑚

When you multiply terms you add the powers.

3𝑥4 × 5𝑥6 = 3 × 5 × 𝑥4 × 𝑥5

= 15 × 𝑥4+5

= 15𝑥9

Lets put it all together with a complicated example:

To rewrite
4√𝑥5𝑥3

3√𝑥 6√𝑥3 in the form 𝑥𝑛, we need to use the following rules:

1. 𝑎𝑛𝑎𝑚 = 𝑎𝑛+𝑚;
2. 𝑛√𝑎 = 𝑎1/𝑛;
3. (𝑎𝑛)𝑚 = 𝑎𝑛×𝑚;
4. 𝑎𝑛

𝑎𝑚 = 𝑎𝑛−𝑚.

We will simplify the numerator and denominator separately to make the steps clearer.
Firstly, applying rule 1, then rule 2, and then rule 3 to the numerator:

4√𝑥5𝑥3

3√𝑥 6√𝑥3 =
4√𝑥8

3√𝑥 6√𝑥3

= (𝑥8)1/4
3√𝑥 6√𝑥3

= 𝑥2

3√𝑥 6√𝑥3

To simplify the denominator, we want to apply rule 2, then rule 3, and then rule 1:
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9 Indices

𝑥2

3√𝑥 6√𝑥3 = 𝑥2

𝑥1/3(𝑥3)1/6

= 𝑥2

𝑥1/3𝑥1/2

= 𝑥2

𝑥5/6

Remember that we’ll need to get common denominators when adding the fractions at
the end:

1
3 + 1

2 = 1 × 2
3 × 2 + 1 × 3

2 × 3
= 2

6 + 3
6

= 5
6

Finally, applying rule 4 and simplifying,

𝑥2

𝑥5/6 = 𝑥2 × 𝑥−5/6

= 𝑥2−5/6

= 𝑥12/6−5/6

= 𝑥7/6

Lots of work with fractions here!

Now try these questions. Don’t worry if it takes a while to just solve one!

50



9.2 Rules of indices

9.2.1 But why? Square roots

As promised here is an explanation of why 𝑥 1
𝑛 = 𝑛√𝑥.

When we take a square root we look for the a number that when it is multiplied by it’s
self we get the answer i.e. ? × ? = 𝑥. Since one 𝑥 is the same as 𝑥1 we can rewrite out
statement again:

? × ? = 𝑥1

𝑥? × 𝑥? = 𝑥1

𝑥?+? = 𝑥1

This means ? + ? = 1 so ? = 1
2 so 𝑥 1

2 = √𝑥.
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10 Differentiation

We often want to be able to find the gradient of a curved line. For that we need a new
technique, called differentiation, that will give us a rule (a new function) to work out
the gradient at any point on the curve.

10.1 The tangent to a curve

The gradient at a point on a curve is the same as the gradient of the tangent at that
point. A tangent to a curve is a straight line that just touches curve at that point. Below
is a picture of the tangent to the curve when 𝑥 = 5. You can open up the graph and
move the point around with the slider.

Notice that the gradient will change depending on which value of 𝑥 you use.
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10 Differentiation

10.2 The rules of differentiation

Luckily finding the rule to get the gradient of a curve is straight forward. The language
we use for this process is like this. When function is differentiated a new function, the
derivative, is found. The derivative enables you to find the gradient. There are lots of
ways write this in mathematical notation. Here are the most common.

original function derivative

𝑦 𝑑𝑦
𝑑𝑥

𝑓(𝑥) 𝑓 ′(𝑥)

𝑑𝑦
𝑑𝑥 is pronounced ‘dee 𝑦 by dee 𝑥’, and 𝑓 ′(𝑥) is read as ‘f dash of 𝑥’.

The rule for differentiating polynomials (functions made up of adding different powers
of 𝑥)is:

Note

• if 𝑦 = 𝑎𝑥𝑛 then 𝑑𝑦
𝑑𝑥 = 𝑎𝑛𝑥𝑛−1, or,

• if 𝑓(𝑥) = 𝑎𝑥𝑛 then 𝑓 ′(𝑥) = 𝑎𝑛𝑥𝑛−1 Times by the power, then take one
off the power

Here are some examples:

If 𝑦 = 3𝑥4 then 𝑑𝑦
𝑑𝑥 = 3 × 4 × 𝑥4−1 = 12𝑥3

Multiple terms added together are differentiated one by one then added together:

𝑦 = 6𝑥3 + 2𝑥2 + 4𝑥 + 5
𝑑𝑦
𝑑𝑥 = 6𝑥3 + 2𝑥2 + 4𝑥1 + 5𝑥0

= 3 × 6𝑥3−1 + 2 × 𝑥2−1 + 1 × 4𝑥1−1 + 0 × 5𝑥0−1

= 18𝑥2 + 2𝑥1 + 4𝑥0 + 0
= 18𝑥2 + 2𝑥 + 4

In the above example we’ve used the following mathematical facts:

• 𝑥 = 𝑥1, 𝑥 on it’s own is 𝑥1

• 𝑥0 = 1, you can always multiply by 𝑥0 since it’s 1
• 0 × 𝑎 = 0 anything times zero is zero
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10.3 Finding gradient at a point

The take away from this is that constant terms, terms without 𝑥 in, disappear, and
terms with just 𝑥 in loose the 𝑥.

Try these questions to get to grips with the rules of differentiation.

10.3 Finding gradient at a point

To find the gradient at a point. Differentiate the original function and then substitute
the 𝑥 value of the point into the derivative.

For example to find the gradient when 𝑥 = 3 for the function 𝑦 = 𝑥2. We would
differentiate and then substitute in 𝑥 = 3.

𝑦 = 𝑥2

𝑑𝑦
𝑑𝑥 = 2𝑥

= 2(3)
= 2 × 3
= 6

So the gradient at 𝑥 = 3 on the curve 𝑦 = 𝑥2 is 6.
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11 Exponential functions

Exponential functions crop up in applied mathematics everywhere. This section looks at
these important functions, so important that, Professor Albert Bartlett said the following
about them in this lecture Arithmetic, Population and Energy.

The greatest shortcoming of the human race is our inability to understand the exponential
function.

11.1 Getting to know exponential functions

An exponential function comes in the for, 𝑦 = 𝑎𝑥. They can increase incredibly fast.
Take for example 𝑦 = 2𝑥

𝑥 𝑦 = 2𝑥

−2 𝑦 = 2−2 = 1
22 = 1

4
−1 𝑦 = 2−1 = 1

21 = 1
2

0 𝑦 = 20 = 1
1 𝑦 = 21 = 2
2 𝑦 = 22 = 4
3 𝑦 = 23 = 8
4 𝑦 = 24 = 16

Plotting these points give a graph that looks like:
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11 Exponential functions

Notice the following key points about the graph.

Note

• The graph quickly increases.
• It crosses the 𝑦 axis at 1 (all exponential graphs do this).
• It never goes under the 𝑥 axis.

11.2 The exponential function

There is one exponential function that is so important that it is called the exponential
function. It is written as 𝑦 = 𝑒𝑥 where 𝑒 is an irrational number (an infinitely long
decimal number that doesn’t repeat itself, /𝑝𝑖 is an irrational number too). The value
of 𝑒 is:

𝑒 = 2.71828182845904523536028747135266249775724709369995...
ish.

The reason why it is special is that when 𝑦 = 𝑒𝑥, the derivative is itself, that is 𝑑𝑦
𝑑𝑥 = 𝑒𝑥.

Below is a graph of 𝑦 = 𝑎𝑥 (solid red line) and it derivative (dashed blue line), you can
open it up and change the value of 𝑎 from 2 to 4. 𝑎 is set to 2 to begin with, notice how
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11.3 Differentiating 𝑒𝑥

the derivative is beneath the curve 𝑦 = 𝑎𝑥. When 𝑎 is increased the derivative moves
above 𝑦 = 𝑎𝑥. The point where the two curves overlap is when 𝑎 = 𝑒.

Note

If 𝑦 = 𝑒𝑥 then 𝑑𝑦
𝑑𝑥 = 𝑒𝑥.

11.3 Differentiating 𝑒𝑥

The rule for differentiating 𝑒𝑥 is if 𝑦 = 𝑘𝑒𝑎𝑥 then 𝑑𝑦
𝑑𝑥 = 𝑎𝑘𝑒𝑎𝑥.

Use that rule to try the following questions.

59

https://www.desmos.com/calculator/d635xag3xe?embed


11 Exponential functions
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12 Logarithms

Logarithms, or logs for short, are the same as powers just written in another way.

12.1 Reverse of indices

Key point:

If 𝑎𝑦 = 𝑥 then 𝑦 = log𝑎 𝑥.

𝑎 is called the base of the logarithm. When dealing with logs it’s often useful to think
of a numerical example to keep the idea straight in your head.

103 = 1000
3 = log10 1000

This is the same fact written in index notation and as a logarithm.

12.2 Rules of logarithms

Just as there are rules when dealing with indices, there are the corresponding rules when
dealing with logarithms too.

Key point:

• log𝑎 𝑥 + log𝑎 𝑦 = log𝑎 𝑥𝑦
• log𝑎 𝑥 − log𝑎 𝑦 = log𝑎

𝑥
𝑦

• log𝑎 𝑥𝑛 = 𝑛 log𝑎 𝑥

We can use these rules to manipulate algebraic expressions. For example, let’s write the
following as a single logarithm:

61



12 Logarithms

3 log10 2 + log10 5 − log10 4 = log10 23 + log10 5 − log10 4
= log10 8 + log10 5 − log10 4
= log10(8 × 5) − log10 4
= log10 40 − log10 4

= log10(
40
4 )

= log10(10)
= 1

This is how it was done:

• First we used the power rule log𝑎 𝑥𝑛 = 𝑛 log𝑎 𝑥,
• then the addition rule log𝑎 𝑥 + log𝑎 𝑦 = log𝑎 𝑥𝑦,
• and finally, the subtraction rule log𝑎 𝑥 − log𝑎 𝑦 = log𝑎

𝑥
𝑦 .

• Then notice log10(10) = 1 since 101 = 10.

Have a go at these simplification questions.
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12.3 Solving equations with logarithms in

12.3 Solving equations with logarithms in

For example, let’s solve 3 log10 𝑥 + log10 2 = log10 250. First we’ll apply the power rule
log𝑎 𝑥𝑛 = 𝑛 log𝑎 𝑥, then the addition rule log𝑎 𝑥 + log𝑎 𝑦 = log𝑎 𝑥𝑦:

3 log10 𝑥 + log10 2 = log10 250
log10 𝑥3 + log10 2 = log10 250

log10 2𝑥3 = log10 250

Now since the two sides are equal the values inside the logarithm must be equal. We
can then go ahead and solve the resulting equation as normal.

log10 2𝑥3 = log10 250
2𝑥3 = 250
𝑥3 = 125
𝑥 = 3√125
= 5

Have a go at the following questions:
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12 Logarithms

12.4 Some important bases

Some bases in logarithms come up more than others, because of that some bases have
their own notation.

12.4.1 The natural logarithm

A logarithm that has 𝑒 as it’s base is known as the natural logarithm and has it’s own
symbol.

Key point:

log𝑒 𝑥 = ln𝑥

12.4.2 Base 10

A logarithm that has 10 as it’s base has it’s own symbol.

Key point:

log10 𝑥 = log𝑥

You just don’t bother writing the base.

12.5 Differentiating ln𝑥

The rule for differentiating ln𝑥 is:

Key point:

if 𝑦 = 𝑘 ln 𝑎𝑥 then 𝑑𝑦
𝑑𝑥 = 𝑘

𝑥 .

Use that rule to try the following questions.

64



12.5 Differentiating ln𝑥
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13 Further differentiation

So far we have looked at differentiating powers of 𝑥 when they are added together. This
section introduces differentiating 𝑒𝑥 and ln𝑥, then goes on to look at how to differentiate,
functions inside functions, products of functions (when functions are multiplied together)
and quotients of functions (when functions are divided by each other).

13.1 Standard results

We can now expand our table of derivatives. Here are all the rules from the last differ-
entiation along with some new ones.

original function derivative

𝑦 𝑑𝑦
𝑑𝑥

𝑓(𝑥) 𝑓 ′(𝑥)
𝑓(𝑥) + 𝑔(𝑥) 𝑓 ′(𝑥) + 𝑔′(𝑥)

𝑎𝑥𝑛 𝑎𝑛𝑥𝑛−1

𝑒𝑥 𝑒𝑥
𝑒𝑎𝑥 𝑎𝑒𝑎𝑥
ln𝑥 1

𝑥
ln 𝑎𝑥 1

𝑥

We can now happily just apply the rules (and some rules of indices for good measure).
For example:

𝑦 = 2𝑥4 + 𝑒2𝑥 + ln𝑥 +√𝑥 + 100
= 2𝑥4 + 𝑒2𝑥 + ln𝑥 + 𝑥1/2 + 100

𝑑𝑦
𝑑𝑥 = 8𝑥3 + 2𝑒2𝑥 + 1

𝑥 + 1
2𝑥

−1/2

Notice that
√𝑥 was rewritten as 𝑥1/2 to be able to apply the rule 𝑎𝑥𝑛 goes to 𝑎𝑛𝑥𝑛−1.

Try some differentiation with some fractional powers:
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13 Further differentiation

13.2 The chain rule

The chain rule is used when we have functions inside other functions.

If we have a function of the form 𝑦 = 𝑓(𝑔(𝑥)), sometimes described as a function of a
function, to calculate its derivative we need to use the chain rule:

𝑑𝑦
𝑑𝑥 = 𝑑𝑢

𝑑𝑥 × 𝑑𝑦
𝑑𝑢

This can be split up into steps:

Let 𝑢 = 𝑔(𝑥); Rewrite 𝑦 in terms of 𝑢, such that 𝑦 = 𝑓(𝑢); Calculate 𝑑𝑢
𝑑𝑥 and 𝑑𝑦

𝑑𝑢 ; Write
𝑑𝑦
𝑑𝑥 as a product of 𝑑𝑢

𝑑𝑥 and 𝑑𝑦
𝑑𝑢 ; Make sure 𝑑𝑦

𝑑𝑥 is only in terms of 𝑥. Ensure any 𝑢 terms
have been replaced using the initial substitution.

Following this process, we must first identify 𝑔(𝑥). Since the function is of the form
𝑦 = 𝑓(𝑔(𝑥)), we are looking for the ‘inner’ function.

So, for 𝑦 = −(4𝑥2 + 1)4,
𝑔(𝑥) = 4𝑥2 + 1.

If we now set 𝑢 = 𝑔(𝑥), we can rewrite 𝑦 in terms of 𝑢 such that 𝑦 = 𝑓(𝑢):
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13.2 The chain rule

𝑦 = −𝑢4

Next, we calculate the two derivatives 𝑑𝑢
𝑑𝑥 and 𝑑𝑦

𝑑𝑢 :

𝑑𝑢
𝑑𝑥 = 8𝑥, 𝑑𝑦

𝑑𝑢 = −4𝑢3

Plugging these into the chain rule:

𝑑𝑦
𝑑𝑥 = 𝑑𝑢

𝑑𝑥 × 𝑑𝑦
𝑑𝑢,

= 8𝑥 × −4𝑢3,
= −32𝑥𝑢3.

Finally, we need to express 𝑑𝑦
𝑑𝑥 only in terms of 𝑥, so we must replace the 𝑢 term using

the initial substitution 𝑢 = 4𝑥2 + 1:

𝑑𝑦
𝑑𝑥 = −32𝑥(4𝑥2 + 1)3.

Phew! Time for a cup of tea, or maybe some more questions…
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13 Further differentiation

13.3 The product rule

If we have a function of the form 𝑦 = 𝑢(𝑥)𝑣(𝑥), to calculate its derivative we need to use
the product rule:

𝑑𝑦
𝑑𝑥 = 𝑢(𝑥) × 𝑑𝑣

𝑑𝑥 + 𝑣(𝑥) × 𝑑𝑢
𝑑𝑥.

This can be split up into steps:

Identify the functions 𝑢(𝑥) and 𝑣(𝑥); Calculate their derivatives 𝑑𝑢
𝑑𝑥 and 𝑑𝑣

𝑑𝑥 ; Substitute
these into the formula for the product rule to obtain an expression for 𝑑𝑦

𝑑𝑥 ; Simplify 𝑑𝑦
𝑑𝑥

where possible.

Following this process, we must first identify 𝑢(𝑥) and 𝑣(𝑥).
As

𝑦 = 𝑒𝑥𝑙𝑛(6𝑥),

let
𝑢(𝑥) = 𝑒𝑥 and 𝑣(𝑥) = 𝑙𝑛(6𝑥).

Next, we need to find the derivatives, 𝑑𝑢
𝑑𝑥 and 𝑑𝑣

𝑑𝑥 :

𝑑𝑢
𝑑𝑥 = 𝑒𝑥 and 𝑑𝑣

𝑑𝑥 = 1
𝑥.

Substituting these results into the product rule formula we can obtain an expression for
𝑑𝑦
𝑑𝑥 :

𝑑𝑦
𝑑𝑥 = 𝑑𝑢

𝑑𝑥 × 𝑣(𝑥) + 𝑢(𝑥) × 𝑑𝑣
𝑑𝑥

= 𝑒𝑥 × ln(6𝑥) + 𝑒𝑥 × 1
𝑥.

Simplifying,

𝑑𝑦
𝑑𝑥 = 𝑒𝑥 ln(6𝑥) + 𝑒𝑥 1𝑥

= 𝑒𝑥(ln(6𝑥) + 1
𝑥).

Now your turn…
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13.4 The quotient rule

13.4 The quotient rule

If we have a function of the form 𝑦 = 𝑢(𝑥)
𝑣(𝑥) , to calculate its derivative we need to use the

quotient rule:

𝑑𝑦
𝑑𝑥 = 𝑣(𝑥) × 𝑑𝑢

𝑑𝑥 − 𝑢(𝑥) × 𝑑𝑣
𝑑𝑥

[𝑣(𝑥)]2 .

This can be split up into steps:

Identify the functions 𝑢(𝑥) and 𝑣(𝑥); Calculate their derivatives 𝑑𝑢
𝑑𝑥 and 𝑑𝑣

𝑑𝑥 ; Substitute
these into the formula for the quotient rule to obtain an expression for 𝑑𝑦

𝑑𝑥 ; Simplify 𝑑𝑦
𝑑𝑥

where possible.

Following this process, we must first identify 𝑢(𝑥) and 𝑣(𝑥).
For example if:

𝑦 = 𝑒2𝑥
3𝑥2 + 4𝑥 + 5,

let
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13 Further differentiation

𝑢(𝑥) = 𝑒2𝑥 and 𝑣(𝑥) = 3𝑥2 + 4𝑥 + 5.

Next, we need to find the derivatives, 𝑑𝑢
𝑑𝑥 and 𝑑𝑣

𝑑𝑥 :

𝑑𝑢
𝑑𝑥 = 2𝑒2𝑥 and 𝑑𝑣

𝑑𝑥 = 6𝑥 + 4.

Substituting these results into the quotient rule formula we can obtain an expression for
𝑑𝑦
𝑑𝑥 :

𝑑𝑦
𝑑𝑥 = 𝑣(𝑥) × 𝑑𝑢

𝑑𝑥 − 𝑢(𝑥) × 𝑑𝑣
𝑑𝑥

[𝑣(𝑥)]2

= (3𝑥2 + 4𝑥 + 5) × 2𝑒2𝑥 − 𝑒2𝑥 × (6𝑥 + 4)
(3𝑥2 + 4𝑥 + 5)2 .

Simplifying,

𝑑𝑦
𝑑𝑥 = 2𝑒2𝑥(3𝑥2 + 4𝑥 + 5) − 𝑒2𝑥(6𝑥 + 4)

(3𝑥2 + 4𝑥 + 5)2

= 𝑒2𝑥[(6𝑥2 + 8𝑥 + 10) − (6𝑥 + 4)]
(3𝑥2 + 4𝑥 + 5)2

= 𝑒2𝑥(6𝑥2 + 8𝑥 + 10 − 6𝑥 − 4)
(3𝑥2 + 4𝑥 + 5)2

= 𝑒2𝑥(6𝑥2 + 2𝑥 + 6)
(3𝑥2 + 4𝑥 + 5)2

= 2𝑒2𝑥(3𝑥2 + 𝑥 + 3)
(3𝑥2 + 4𝑥 + 5)2 .

Now have a go at these:
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13.4 The quotient rule
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