1 Table of derivatives

Table 1 lists some of the common functions used in engineering and their corresponding derivatives. Remember that in each case the function in the right-hand column gives the rate of change, or the gradient of the graph, of the function on the left at a particular value of x .

N.B. The angle must always be in radians when differentiating trigonometric functions.

Table 1

Common functions and their derivatives
(In this table k , n and c are constants)

Function Derivative
constant 0
x 1
k x k
x n n x n 1
k x n k n x n 1
e x e x
e k x k e k x
ln x 1 x
ln k x 1 x
sin x cos x
sin k x k cos k x
sin ( k x + c ) k cos ( k x + c )
cos x sin x
cos k x k sin k x
cos ( k x + c ) k sin ( k x + c )
tan x sec 2 x
tan k x k sec 2 k x
tan ( k x + c ) k sec 2 ( k x + c )

In the trigonometric functions the angle is in radians.

Key Point 4

Particularly important is the rule for differentiating powers of functions:

If y = x n then d y d x = n x n 1

For example, if y = x 3 then d y d x = 3 x 2 .

Example 2

Use Table 1 to find d y d x when y is given by

  1.   7 x   
  2. 14  
  3. 5 x 2   
  4.   4 x 7
Solution
  1. We note that 7 x is of the form k x where k = 7 . Using Table 1 we then have d y d x = 7 .
  2. Noting that 14 is a constant we see that d y d x = 0 .
  3. We see that 5 x 2 is of the form k x n , with k = 5 and n = 2 . The derivative, k n x n 1 , is then

      10 x 1 , or more simply, 10 x . So if y = 5 x 2 , then d y d x = 10 x .

  4. We see that 4 x 7 is of the form k x n , with k = 4 and n = 7 . Hence the derivative, d y d x , is

     given by 28 x 6 .

Task!

Use Table 1 to find d y d x when y is

  1.   x
  2.   5 x 3
  1. Write x as x 1 2 , and use the result for differentiating x n with n = 1 2 .

    d y d x = n x n 1 = 1 2 x 1 2 1 = 1 2 x 1 2 . This may be written as 1 2 x .

  2. Write 5 x 3 as 5 x 3 and use the result for differentiating k x n with k = 5 and n = 3 .

    5 ( 3 ) x 3 1 = 15 x 4 Although Table 1 is written using x as the independent variable, the Table can be used for any variable.

Task!

Use Table 1 to find

  1. d z d t given  z = e t   
  2. d p d t given p = e 8 t   
  3. d z d y given z = e 3 y
  1. From Table 1, if y = e x , then d y d x = e x . Hence if z = e t then d z d t = e t .

  2. 8 e 8 t

  3. 3 e 3 y

Task!

Find the derivative, d y d x , when y is

  1. sin 2 x   
  2. cos x 2   
  3. tan 5 x
  1. Use the result for sin k x in Table 1, taking k = 2 :

    2 cos 2 x

  2. Note that cos x 2 is the same as cos 1 2 x . Use the result for cos k x in Table 1:

    1 2 sin x 2

  3. Use the result for tan k x in Table 1:

    5 sec 2 5 x

Exercises
  1. Find the derivatives of the following functions with respect to x :
    1. 9 x 2   
    2. 5   
    3. 6 x 3   
    4. 13 x 4
  2. Find d z d t when z is given by:
    1. 5 t 3   
    2. t 3   
    3. 5 t 2   
    4. 3 2 t 3 2   
    5. ln 5 t
  3. Find the derivative of each of the following with respect to the appropriate variable:
    1. sin 5 x   
    2. cos 4 t   
    3. tan 3 r   
    4. e 2 v   
    5. 1 e 3 t
  4. Find the derivatives of the following with respect to x :
    1. cos 2 x 3   
    2. sin ( 2 x )   
    3. tan π x   
    4. e x 2   
    5. ln 2 3 x
    1. 18 x
    2. 0
    3. 18 x 2
    4. 52 x 3
    1. 15 t 4
    2. 3 2 t 1 2
    3. 10 t 3
    4. 9 4 t 1 2
    5. 1 t
    1. 5 cos 5 x
    2. 4 sin 4 t
    3. 3 sec 2 3 r
    4. 2 e 2 v
    5. 3 e 3 t
    1. 2 3 sin 2 x 3
    2. 2 cos ( 2 x )
    3. π sec 2 π x
    4. 1 2 e x 2
    5. 1 x