Introduction
The main topic of this Section is the solution of PDEs using the method of separation of variables. In this method a PDE involving independent variables is converted into ordinary differential equations. (In this introductory account will always be 2.)
You should be aware that other analytical methods and also numerical methods are available for solving PDEs. However, the separation of variables technique does give some useful solutions to important PDEs.
Prerequisites
- be able to solve first and second order constant coefficient ordinary differential equations
Learning Outcomes
- apply the separation of variables method to obtain solutions of the heat conduction equation, the wave equation and the 2-D Laplace equation for specified boundary or initial conditions