Integrating a scalar function of a vector over a volume is essentially the same procedure as in
HELM booklet
27.3. In 3D cartesian coordinates the volume element
d
V
is
d
x
d
y
d
z
. The scalar function may be the divergence of a vector function.
Integrate
∇
̲
⋅
F
̲
over the unit cube
0
≤
x
≤
1
,
0
≤
y
≤
1
,
0
≤
z
≤
1
where
F
̲
is the vector function
x
2
y
i
̲
+
(
x
−
z
)
j
̲
+
2
x
z
2
k
̲
.
∇
̲
⋅
F
̲
=
∂
∂
x
(
x
2
y
)
+
∂
∂
y
(
x
−
z
)
+
∂
∂
z
(
2
x
z
2
)
=
2
x
y
+
4
x
z
The integral is
∫
x
=
0
1
∫
y
=
0
1
∫
z
=
0
1
(
2
x
y
+
4
x
z
)
d
z
d
y
d
x
=
∫
x
=
0
1
∫
y
=
0
1
2
x
y
z
+
2
x
z
2
0
1
d
y
d
x
=
∫
x
=
0
1
∫
y
=
0
1
2
x
y
+
2
x
d
y
d
x
=
∫
x
=
0
1
x
y
2
+
2
x
y
0
1
d
x
=
∫
x
=
0
1
3
x
d
x
=
3
2
x
2
0
1
=
3
2
The volume integral of a scalar function (including the divergence of a vector) is a scalar.
Using spherical polar coordinates and the vector field
F
̲
=
r
2
r
̂
̲
+
r
2
sin
θ
ϕ
̂
̲
, evaluate the integral
∫
∫
∫
V
∇
̲
⋅
F
̲
d
V
over the sphere given by
r
≤
a
.
Answer
∇
̲
⋅
F
̲
=
4
r
+
2
r
cos
θ
,
∫
r
=
0
a
∫
θ
=
0
π
∫
ϕ
=
0
2
π
{
(
4
r
+
2
r
cos
θ
)
r
2
sin
θ
}
d
ϕ
d
θ
d
r
=
4
π
a
4
The
r
2
sin
θ
term comes from the Jacobian for the transformation from spherical to cartesian coordinates (see
HELM booklet
27.4 and
HELM booklet
28.3).
Evaluate
∫
∫
∫
V
∇
̲
⋅
F
̲
d
V
when
F
̲
is the vector field
y
z
i
̲
+
x
y
j
̲
and
V
is the unit cube
0
≤
x
≤
1
,
0
≤
y
≤
1
.
For the vector field
F
̲
=
(
x
2
y
+
sin
z
)
i
̲
+
(
x
y
2
+
e
z
)
j
̲
+
(
z
2
+
x
y
)
k
̲
, find the integral
∫
∫
∫
V
∇
̲
⋅
F
̲
d
V
where
V
is the volume inside the tetrahedron bounded by
x
=
0
,
y
=
0
,
z
=
0
and
x
+
y
+
z
=
1
.
Answer
Less commonly, integrating a vector function over a volume integral is similar, but care should be taken with the various components. It may help to think in terms of a separate volume integral for each component. The vector function may be of the form
∇
̲
f
or
∇
̲
×
F
̲
.
Integrate the function
F
̲
=
x
2
i
̲
+
2
j
̲
over the prism given by
0
≤
x
≤
1
,
0
≤
y
≤
2
,
0
≤
z
≤
(
1
−
x
)
. (See Figure 15.)
Figure 15:
The integral is
∫
x
=
0
1
∫
y
=
0
2
∫
z
=
0
1
−
x
(
x
2
i
̲
+
2
j
̲
)
d
z
d
y
d
x
=
∫
x
=
0
1
∫
y
=
0
2
x
2
z
i
̲
+
2
z
j
̲
z
=
0
1
−
x
d
y
d
x
=
∫
x
=
0
1
∫
y
=
0
2
x
2
(
1
−
x
)
i
̲
+
2
(
1
−
x
)
j
̲
d
y
d
x
=
∫
x
=
0
1
∫
y
=
0
2
(
x
2
−
x
3
)
i
̲
+
(
2
−
2
x
)
j
̲
d
y
d
x
=
∫
x
=
0
1
(
2
x
2
−
2
x
3
)
i
̲
+
(
4
−
4
x
)
j
̲
d
x
=
(
2
3
x
3
−
1
2
x
4
)
i
̲
+
(
4
x
−
2
x
2
)
j
̲
0
1
=
1
6
i
̲
+
2
j
̲
For
F
̲
=
x
2
y
i
̲
+
y
2
j
̲
evaluate
∫
∫
∫
V
(
∇
̲
×
F
̲
)
d
V
where
V
is the volume under the plane
z
=
x
+
y
+
2
(and above
z
=
0
) for
−
1
≤
x
≤
1
,
−
1
≤
y
≤
1
.
∇
̲
×
F
̲
=
i
̲
j
̲
k
̲
∂
∂
x
∂
∂
y
∂
∂
z
x
2
y
y
2
0
=
−
x
2
k
̲
so
∫
∫
∫
V
(
∇
̲
×
F
̲
)
d
V
=
∫
x
=
−
1
1
∫
y
=
−
1
1
∫
z
=
0
x
+
y
+
2
(
−
x
2
)
k
̲
d
z
d
y
d
x
=
∫
x
=
−
1
1
∫
y
=
−
1
1
(
−
x
2
)
z
k
̲
z
=
0
x
+
y
+
2
d
y
d
x
=
∫
x
=
−
1
1
∫
y
=
−
1
1
−
x
3
−
x
2
y
−
2
x
2
d
y
d
x
k
̲
=
∫
x
=
−
1
1
−
x
3
y
−
1
2
x
2
y
2
−
2
x
2
y
y
=
−
1
1
d
x
k
̲
=
∫
x
=
−
1
1
−
2
x
3
−
0
−
4
x
2
d
x
k
̲
=
−
1
2
x
4
−
4
3
x
3
−
1
1
k
̲
=
−
8
3
k
̲
Figure 16:
The volume integral of a vector function (including the gradient of a scalar or the curl of a vector) is a vector.
Evaluate the integral
∫
V
F
̲
d
V
for the case where
F
̲
=
x
i
̲
+
y
2
j
̲
+
z
k
̲
and
V
is the cube
−
1
≤
x
≤
1
,
−
1
≤
y
≤
1
,
−
1
≤
z
≤
1
.
Answer
∫
x
=
−
1
1
∫
y
=
−
1
1
∫
z
=
−
1
1
(
x
i
̲
+
y
2
j
̲
+
z
k
̲
)
d
z
d
y
d
x
=
8
3
j
̲
For
f
=
x
2
+
y
z
, and
V
the volume bounded by
y
=
0
,
x
+
y
=
1
and
−
x
+
y
=
1
for
−
1
≤
z
≤
1
, find the integral
∫
∫
∫
V
(
∇
̲
f
)
d
V
.
Evaluate the integral
∫
V
(
∇
̲
×
F
̲
)
d
V
for the case where
F
̲
=
x
z
i
̲
+
(
x
3
+
y
3
)
j
̲
−
4
y
k
̲
and
V
is the cube
−
1
≤
x
≤
1
,
−
1
≤
y
≤
1
,
−
1
≤
z
≤
1
.
Answer
2
3
k
̲
,
−
32
i
̲
+
8
k
̲