4 Volume integrals involving vectors

Integrating a scalar function of a vector over a volume is essentially the same procedure as in HELM booklet  27.3. In 3D cartesian coordinates the volume element d V is d x d y d z . The scalar function may be the divergence of a vector function.

Example 28

Integrate ̲ F ̲ over the unit cube 0 x 1 , 0 y 1 , 0 z 1 where F ̲ is the vector function x 2 y i ̲ + ( x z ) j ̲ + 2 x z 2 k ̲ .

Solution

̲ F ̲ = x ( x 2 y ) + y ( x z ) + z ( 2 x z 2 ) = 2 x y + 4 x z

The integral is

x = 0 1 y = 0 1 z = 0 1 ( 2 x y + 4 x z ) d z d y d x = x = 0 1 y = 0 1 2 x y z + 2 x z 2 0 1 d y d x = x = 0 1 y = 0 1 2 x y + 2 x d y d x = x = 0 1 x y 2 + 2 x y 0 1 d x = x = 0 1 3 x d x = 3 2 x 2 0 1 = 3 2
Key Point 6

The volume integral of a scalar function (including the divergence of a vector) is a scalar.

Task!

Using spherical polar coordinates and the vector field F ̲ = r 2 r ̂ ̲ + r 2 sin θ ϕ ̂ ̲ , evaluate the integral V ̲ F ̲ d V over the sphere given by r a .

̲ F ̲ = 4 r + 2 r cos θ , r = 0 a θ = 0 π ϕ = 0 2 π { ( 4 r + 2 r cos θ ) r 2 sin θ } d ϕ d θ d r = 4 π a 4

The r 2 sin θ term comes from the Jacobian for the transformation from spherical to cartesian coordinates (see HELM booklet  27.4 and HELM booklet  28.3).

Exercises
  1. Evaluate V ̲ F ̲ d V when F ̲ is the vector field y z i ̲ + x y j ̲ and V is the unit cube 0 x 1 , 0 y 1 .
  2. For the vector field F ̲ = ( x 2 y + sin z ) i ̲ + ( x y 2 + e z ) j ̲ + ( z 2 + x y ) k ̲ , find the integral V ̲ F ̲ d V where V is the volume inside the tetrahedron bounded by x = 0 , y = 0 , z = 0 and x + y + z = 1 .
  1. 1 2 ,
  2. 1 20

Less commonly, integrating a vector function over a volume integral is similar, but care should be taken with the various components. It may help to think in terms of a separate volume integral for each component. The vector function may be of the form ̲ f or ̲ × F ̲ .

Example 29

Integrate the function F ̲ = x 2 i ̲ + 2 j ̲ over the prism given by 0 x 1 , 0 y 2 , 0 z ( 1 x ) . (See Figure 15.)

Figure 15:

{ The prism bounded by 0 less than or equal to x less than or equal to 1, 0 less than or equal to y less than or equal to 2, 0 less than or equal to z less than or equal to (1-x)}

Solution

The integral is

x = 0 1 y = 0 2 z = 0 1 x ( x 2 i ̲ + 2 j ̲ ) d z d y d x = x = 0 1 y = 0 2 x 2 z i ̲ + 2 z j ̲ z = 0 1 x d y d x = x = 0 1 y = 0 2 x 2 ( 1 x ) i ̲ + 2 ( 1 x ) j ̲ d y d x = x = 0 1 y = 0 2 ( x 2 x 3 ) i ̲ + ( 2 2 x ) j ̲ d y d x = x = 0 1 ( 2 x 2 2 x 3 ) i ̲ + ( 4 4 x ) j ̲ d x = ( 2 3 x 3 1 2 x 4 ) i ̲ + ( 4 x 2 x 2 ) j ̲ 0 1 = 1 6 i ̲ + 2 j ̲
Example 30

For F ̲ = x 2 y i ̲ + y 2 j ̲ evaluate V ( ̲ × F ̲ ) d V where V is the volume under the plane z = x + y + 2 (and above z = 0 ) for 1 x 1 , 1 y 1 .

Solution

̲ × F ̲ = i ̲ j ̲ k ̲ x y z x 2 y y 2 0 = x 2 k ̲

so

V ( ̲ × F ̲ ) d V = x = 1 1 y = 1 1 z = 0 x + y + 2 ( x 2 ) k ̲ d z d y d x = x = 1 1 y = 1 1 ( x 2 ) z k ̲ z = 0 x + y + 2 d y d x = x = 1 1 y = 1 1 x 3 x 2 y 2 x 2 d y d x k ̲ = x = 1 1 x 3 y 1 2 x 2 y 2 2 x 2 y y = 1 1 d x k ̲ = x = 1 1 2 x 3 0 4 x 2 d x k ̲ = 1 2 x 4 4 3 x 3 1 1 k ̲ = 8 3 k ̲

Figure 16:

{ The plane defined by z=x+y+z, for z>0, -1 less than or equal to x less than or equal to 1, -1 less than or equal to y less than or equal to 1}

Key Point 7

The volume integral of a vector function (including the gradient of a scalar or the curl of a vector) is a vector.

Task!

Evaluate the integral V F ̲ d V for the case where F ̲ = x i ̲ + y 2 j ̲ + z k ̲ and V is the cube 1 x 1 , 1 y 1 , 1 z 1 .

x = 1 1 y = 1 1 z = 1 1 ( x i ̲ + y 2 j ̲ + z k ̲ ) d z d y d x = 8 3 j ̲

Exercises
  1. For f = x 2 + y z , and V the volume bounded by y = 0 , x + y = 1 and x + y = 1 for 1 z 1 , find the integral V ( ̲ f ) d V .
  2. Evaluate the integral V ( ̲ × F ̲ ) d V for the case where F ̲ = x z i ̲ + ( x 3 + y 3 ) j ̲ 4 y k ̲ and V is the cube 1 x 1 , 1 y 1 , 1 z 1 .
  1. 2 3 k ̲ ,
  2. 32 i ̲ + 8 k ̲