2 Solving linear inequalities algebraically

When we are asked to solve an inequality , the inequality will contain an unknown variable, say x . Solving means obtaining all values of x for which the inequality is true. In a linear inequality the unknown appears only to the first power, that is as x , and not as x 2 , x 3 , x 1 2 and so on.

Consider the following examples.

Example 35

Solve the inequality 4 x + 3 > 0 .

Solution

4 x + 3 > 0 4 x > 3 ,  by subtracting 3 from both sides x > 3 4  by dividing both sides by 4.

Hence all values of x greater than 3 4 satisfy 4 x + 3 > 0 .

Example 36

Solve the inequality 3 x 7 0 .

Solution

3 x 7 0 3 x 7  by adding 7 to both sides x 7 3  dividing both sides by  3  and reversing the inequality

Hence all values of x greater than or equal to 7 3 satisfy 3 x 7 0 .

Task!

Solve the inequality 17 x + 2 < 4 x + 1 .

This is done by making x the subject and obtain it on its own on the left-hand side.

Start by subtracting 4 x from both sides to remove quantities involving x from the right:

13 x + 2 < 1

Now subtract 2 from both sides to remove the 2 on the left:

13 x < 1 . Finally, the range of values of x are x < 1 13

Example 37

Solve the inequality 5 x 2 < 4 and depict the solution graphically.

Solution

5 x 2 < 4 is equivalent to 4 < 5 x 2 < 4

We treat each part of the inequality separately:

4 < 5 x 2 2 < 5 x  by adding 2 to both sides 2 5 < x  by dividing both sides by 5

So x > 2 5 . Now consider the second part: 5 x 2 < 4 .

5 x 2 < 4 5 x < 6  by adding 2 to both sides x < 6 5  by dividing both sides by 5

So x < 6 5 .Putting both parts of the solution together we see that the inequality is satisfied when

2 5 < x < 6 5 . This range of values is shown in Figure 11.

Figure 11 :

{ $|5x-2|$ less than $4$ which is equivalent to $2/5$ less than $x$ less than $6/5$}

Task!

Solve the inequality 1 2 x < 5 .

First of all rewrite the inequality without using the modulus sign:

5 < 1 2 x < 5

Then treat each part separately. First of all consider 5 < 1 2 x . Solve this:

x < 3

The second part is 1 2 x < 5 . Solve this.

x > 2

Finally, give the solution as one statement:

2 < x < 3 .

Exercises

In the following questions solve the given inequality algebraically.

1.   4 x > 8 2.   5 x > 8 3.   8 x > 5 4.   8 x 5
5.   2 x > 1 6.   3 x < 1 7.   5 x > 2 8.   2 x > 0
9.   8 x < 0 10.   3 x 0 11.   3 x > 4 12.   3 4 x > 1
13.   4 x 3 14.   3 x 4 15.   5 x 0 16. 4 x 0
17.   5 x + 1 < 8 18.   5 x + 1 8 19.   7 x + 3 0
20.   18 x + 2 > 9 21.   14 x + 11 > 22 22. 1 5 x 0
23.   2 + 5 x 1 24.   11 7 x < 2 25. 5 + 4 x > 2 x + 1
26.   7 x 3 > 1 27.   2 x + 1 3 28.   5 x < 1
29.   5 x 0 30.   1 5 x > 2 31.   2 5 x 3
1.   x > 2 2.   x > 8 5 3.   x > 5 8 4.   x 5 8
5.   x > 1 2 6.   x < 1 3 7.   x > 2 5 8.   x > 0
9.   x < 0 10.   x 0 11.   x > 4 3 12.   x > 4 3
13.   x 3 4 14.   x 4 3 15.   x 0 16.   x 0
17.   x < 7 5 18.   x 7 5 19.   x 3 7 20. x > 7 18
21.   x > 11 14 22.   x 1 5 23.   x 1 5 24.   x > 9 7
25. x > 2 26.   x > 4 7 or x < 2 7 27.   x 1 or x 2 28.   1 5 < x < 1 5
29.   x = 0 30.   x < 1 5 , x > 3 5 31.   x 1 5 , x 1