3 A formula for finding the vector product

We can use the results in Key Point 19 to develop a formula for finding the vector product of two vectors given in Cartesian form: Suppose a ̲ = a 1 i ̲ + a 2 j ̲ + a 3 k ̲ and b ̲ = b 1 i ̲ + b 2 j ̲ + b 3 k ̲ then

a ̲ × b ̲ = ( a 1 i ̲ + a 2 j ̲ + a 3 k ̲ ) × ( b 1 i ̲ + b 2 j ̲ + b 3 k ̲ ) = a 1 i ̲ × ( b 1 i ̲ + b 2 j ̲ + b 3 k ̲ ) + a 2 j ̲ × ( b 1 i ̲ + b 2 j ̲ + b 3 k ̲ ) + a 3 k ̲ × ( b 1 i ̲ + b 2 j ̲ + b 3 k ̲ ) = a 1 b 1 ( i ̲ × i ̲ ) + a 1 b 2 ( i ̲ × j ̲ ) + a 1 b 3 ( i ̲ × k ̲ ) + a 2 b 1 ( j ̲ × i ̲ ) + a 2 b 2 ( j ̲ × j ̲ ) + a 2 b 3 ( j ̲ × k ̲ ) + a 3 b 1 ( k ̲ × i ̲ ) + a 3 b 2 ( k ̲ × j ̲ ) + a 3 b 3 ( k ̲ × k ̲ )

Using Key Point 19, this expression simplifies to

a ̲ × b ̲ = ( a 2 b 3 a 3 b 2 ) i ̲ ( a 1 b 3 a 3 b 1 ) j ̲ + ( a 1 b 2 a 2 b 1 ) k ̲

This gives us Key Point 20:

Key Point 20

If a ̲ = a 1 i ̲ + a 2 j ̲ + a 3 k ̲ and b ̲ = b 1 i ̲ + b 2 j ̲ + b 3 k ̲ then

a ̲ × b ̲ = ( a 2 b 3 a 3 b 2 ) i ̲ ( a 1 b 3 a 3 b 1 ) j ̲ + ( a 1 b 2 a 2 b 1 ) k ̲
Example 17

Evaluate the vector product a ̲ × b ̲ if a ̲ = 3 i ̲ 2 j ̲ + 5 k ̲ and b ̲ = 7 i ̲ + 4 j ̲ 8 k ̲ .

Solution

Identifying a 1 = 3 , a 2 = 2 , a 3 = 5 , b 1 = 7 , b 2 = 4 , b 3 = 8 we find

a ̲ × b ̲ = ( ( 2 ) ( 8 ) ( 5 ) ( 4 ) ) i ̲ ( ( 3 ) ( 8 ) ( 5 ) ( 7 ) ) j ̲ + ( ( 3 ) ( 4 ) ( 2 ) ( 7 ) ) k ̲ = 4 i ̲ + 59 j ̲ + 26 k ̲
Task!

Use Key Point 20 to find the vector product of

p ̲ = 3 i ̲ + 5 j ̲ and q ̲ = 2 i ̲ j ̲ .

Note that in this case there are no k ̲ components so a 3 and b 3 are both zero:

13 k ̲