6 Examples involving grad, div, curl and the Laplacian

The vector differential operators can be combined in several ways as the following examples show.

Example 16

If A ̲ = 2 y z i ̲ x 2 y j ̲ + x z 2 k ̲ , B ̲ = x 2 i ̲ + y z j ̲ x y k ̲ and ϕ = 2 x 2 y z 3 , find

  1. ( A ̲ ̲ ) ϕ
  2. A ̲ ̲ ϕ
  3. B ̲ × ̲ ϕ
  4. 2 ϕ
Solution
  1. ( A ̲ ̲ ) ϕ = ( 2 y z i ̲ x 2 y j ̲ + x z 2 k ̲ ) ( x i ̲ + y j ̲ + z k ̲ ) ϕ = 2 y z x x 2 y y + x z 2 z 2 x 2 y z 3 = 2 y z x ( 2 x 2 y z 3 ) x 2 y y ( 2 x 2 y z 3 ) + x z 2 z ( 2 x 2 y z 3 ) = 2 y z ( 4 x y z 3 ) x 2 y ( 2 x 2 y 3 ) + x z 2 ( 6 x 2 y z 2 ) = 8 x y 2 z 4 2 x 4 y 4 + 6 x 3 y z 4
  2. ̲ ϕ = x ( 2 x 2 y z 3 ) i ̲ + y ( 2 x 2 y z 3 ) j ̲ + z ( 2 x 2 y z 3 ) k ̲ = 4 x y z 3 i ̲ + 2 x 2 z 3 j ̲ + 6 x 2 y z 2 k ̲

    So A ̲ ̲ ϕ = 2 y z i ̲ x 2 y j ̲ + x z 2 k ̲ ( 4 x y z 3 i ̲ + 2 x 2 z 3 j ̲ + 6 x 2 y z 2 k ̲ ) = 8 x y 2 z 4 2 x 4 y z 3 + 6 x 3 y z 4
  3. ̲ ϕ = 4 x y z 3 i ̲ + 2 x 2 z 3 j ̲ + 6 x 2 y z 2 k ̲ so B ̲ × ̲ ϕ = i ̲ j ̲ k ̲ x 2 y z x y 4 x y z 3 2 x 2 z 3 6 x 2 y z 2 = i ̲ ( 6 x 2 y 2 z 3 + 2 x 3 y z 3 ) + j ̲ ( 4 x 2 y 2 z 3 6 x 4 y z 2 ) + k ̲ ( 2 x 4 z 3 4 x y 2 z 4 )
  4. 2 ϕ = 2 x 2 ( 2 x 2 y z 3 ) + 2 y 2 ( 2 x 2 y z 3 ) + 2 z 2 ( 2 x 2 y z 3 ) = 4 y z 3 + 0 + 12 x 2 y z
Example 17

For each of the expressions below determine whether the quantity can be formed and, if so, whether it is a scalar or a vector.

  1. grad(div A ̲ )
  2. grad(grad ϕ )
  3. curl(div F ̲ )
  4. div [ curl ( A ̲ × grad ϕ ) ]
Solution
  1. A ̲ is a vector and div A ̲ can be calculated and is a scalar. Hence, grad(div A ̲ ) can be formed and is a vector.
  2. ϕ is a scalar so grad ϕ can be formed and is a vector. As grad ϕ is a vector, it is not possible to take grad(grad ϕ ).
  3. F ̲ is a vector and hence div F ̲ is a scalar. It is not possible to take the curl of a scalar so curl(div F ̲ ) does not exist.
  4. ϕ is a scalar so grad ϕ exists and is a vector. A ̲ × grad ϕ exists and is also a vector as is curl A ̲ × grad ϕ . The divergence can be taken of this last vector to give

    div [ curl ( A ̲ × grad ϕ ) ] which is a scalar.