7 Identities involving grad, div and curl

There are numerous identities involving the vector derivatives; a selection are given in Table 1.

Table 1

1 div ( ϕ A ̲ ) = grad  ϕ A ̲ + ϕ div  A ̲ or ̲ ( ϕ A ̲ ) = ( ̲ ϕ ) A ̲ + ϕ ( ̲ A ̲ )
2 curl ( ϕ A ̲ ) = grad  ϕ × A ̲ + ϕ curl  A ̲ or ̲ × ( ϕ A ̲ ) = ( ̲ ϕ ) × A ̲ + ϕ ( ̲ × A ̲ )
3 div ( A ̲ × B ̲ ) = B ̲ curl  A ̲ A ̲ curl  B ̲ or ̲ ( A ̲ × B ̲ ) = B ̲ ( ̲ × A ̲ ) A ̲ ( ̲ × B ̲ )
4 curl ( A ̲ × B ̲ ) = ( B ̲ grad ) A ̲ ( A ̲ grad ) B ̲ or ̲ × ( A ̲ × B ̲ ) = ( B ̲ ̲ ) A ̲ ( A ̲ ̲ ) B ̲
+ A ̲ div  B ̲ B ̲ div  A ̲ + A ̲ ̲ B ̲ B ̲ ̲ A ̲
5 grad ( A ̲ B ̲ ) = ( B ̲ grad ) A ̲ + ( A ̲ grad ) B ̲ or ̲ ( A ̲ B ̲ ) = ( B ̲ ̲ ) A ̲ + ( A ̲ ̲ ) B ̲
+ A ̲ × curl  B ̲ + B ̲ × curl  A ̲ + A ̲ × ( ̲ × B ̲ ) + B ̲ × ( ̲ × A ̲ )
6 curl ( grad  ϕ ) = 0 ̲ or ̲ × ( ̲ ϕ ) = 0 ̲
7 div ( curl  A ̲ ) = 0 ̲ or ̲ ( ̲ × A ̲ ) = 0 ̲
Example 18

Show for any vector field A ̲ = A 1 i ̲ + A 2 j ̲ + A 3 k ̲ , that div curl A ̲ = 0 ̲ .

Solution

div curl  A ̲ = div i ̲ j ̲ j ̲ x y z A 1 A 2 A 3 = div A 3 y A 2 z i ̲ + A 1 z A 3 x j ̲ + A 2 x A 1 y k ̲ = x A 3 y A 2 z + y A 1 z A 3 x + z A 2 x A 1 y = 2 A 3 x y 2 A 2 z x + 2 A 1 y z 2 A 3 y x + 2 A 2 z x 2 A 1 z y = 0

N.B. This assumes 2 A 3 x y = 2 A 3 y x etc.

Example 19

Verify identity 1 for the vector A ̲ = 2 x y i ̲ 3 z k ̲ and the function ϕ = x y 2 .

Solution

ϕ A ̲ = 2 x 2 y 3 i ̲ 3 x y 2 z k ̲ so
̲ ϕ A ̲ = ̲ 2 x 2 y 3 i ̲ 3 x y 2 z k ̲ = x ( 2 x 2 y 3 ) + z ( 3 x y 2 z ) = 4 x y 3 3 x y 2
So LHS = 4 x y 3 3 x y 2 .

̲ ϕ = x ( x y 2 ) i ̲ + y ( x y 2 ) j ̲ + z ( x y 2 ) k ̲ = y 2 i ̲ + 2 x y j ̲ so
( ̲ ϕ ) A ̲ = ( y 2 i ̲ + 2 x y j ̲ ) ( 2 x y i ̲ 3 z k ̲ ) = 2 x y 3
̲ A ̲ = ̲ ( 2 x y i ̲ 3 z k ̲ ) = 2 y 3 so ϕ ̲ A ̲ = 2 x y 3 3 x y 2 giving
( ̲ ϕ ) A ̲ + ϕ ( ̲ A ̲ ) = 2 x y 3 + ( 2 x y 3 3 x y 2 ) = 4 x y 3 3 x y 2
So RHS = 4 x y 3 3 x y 2 = LHS.

So ̲ ( ϕ A ̲ ) = ( ̲ ϕ ) A ̲ + ϕ ( ̲ A ̲ ) in this case.

Task!

If F ̲ = x 2 y i ̲ 2 x z j ̲ + 2 y z k ̲ , find

  1. ̲ F ̲
  2. ̲ × F ̲
  3. ̲ ( ̲ F ̲ )
  4. ̲ ( ̲ × F ̲ )
  5. ̲ × ( ̲ × F ̲ )
  1. 2 x y + 2 y ,
  2. ( 2 x + 2 z ) i ̲ ( x 2 + 2 z ) k ̲ ,
  3. 2 y i ̲ + ( 2 + 2 x ) j ̲ (using answer to (1)),
  4. 0 (using answer to (2)),
  5. ( 2 + 2 x ) j ̲ (using answer to (2))
Task!

If ϕ = 2 x z y 2 z , find

  1. ̲ ϕ
  2. 2 ϕ = ̲ ( ̲ ϕ )
  3. ̲ × ( ̲ ϕ )
  1. 2 z i ̲ 2 y z j ̲ + ( 2 x y 2 ) k ̲ ,
  2. 2 z ,
  3. 0 ̲ where (b) and (c) use the answer to (a).
Exercise

Which of the following combinations of grad, div and curl can be formed? If a quantity can be formed, state whether it is a scalar or a vector.

  1. div (grad ϕ )
  2. div (div A ̲ )
  3. curl (curl F ̲ )
  4. div (curl F ̲ )
  5. curl (grad ϕ )
  6. curl (div A ̲ )
  7. div ( A ̲ B ̲ )
  8. grad ( ϕ 1 ϕ 2 )
  9. curl (div ( A ̲ × grad ϕ ))

(1), (4) are scalars;

(3), (5), (8) are vectors;

(2), (6), (7) and (9) are not defined.