3 Cylindrical polar coordinates

In cylindrical polar coordinates ( ρ , ϕ , z ) , the three unit vectors are ρ ̂ ̲ , ϕ ̂ ̲ and ̲ (see Figure 20(b) on page 38) with scale factors

h ρ = 1 , h ϕ = ρ , h z = 1 .

The quantities ρ and ϕ are related to x and y by x = ρ cos ϕ and y = ρ sin ϕ . The unit vectors are ρ ̂ ̲ = cos ϕ i ̲ + sin ϕ j ̲ and ϕ ̂ ̲ = sin ϕ i ̲ + cos ϕ j ̲ . In cylindrical polar coordinates,

grad f = ̲ f = f ρ ρ ̂ ̲ + 1 ρ f ϕ ϕ ̂ ̲ + f z ̲

The scale factor ρ is necessary in the ϕ -component because the derivatives with respect to ϕ are distorted by the distance from the axis ρ = 0 . If F ̲ = F ρ ρ ̂ ̲ + F ϕ ϕ ̂ ̲ + F z ̲ then

div F ̲ = ̲ F ̲ = 1 ρ ρ ( ρ F ρ ) + ϕ ( F ϕ ) + z ( ρ F z )

curl F ̲ = ̲ × F ̲ = 1 ρ ρ ̂ ̲ ρ ϕ ̂ ̲ ̲ ρ ϕ z F ρ ρ F ϕ F z .

Example 20

Working in cylindrical polar coordinates, find ̲ f for f = ρ 2 + z 2

Solution

If f = ρ 2 + z 2 then f ρ = 2 ρ , f ϕ = 0 and f z = 2 z so ̲ f = 2 ρ ρ ̂ ̲ + 2 z ̲ .

Example 21

Working in cylindrical polar coordinates find

  1. ̲ f for f = ρ 3 sin ϕ
  2. Show that the result for 1. is consistent with that found working in Cartesian coordinates.
Solution
  1. If f = ρ 3 sin ϕ then f ρ = 3 ρ 2 sin ϕ , f ϕ = ρ 3 cos ϕ and f z = 0 and hence,

    ̲ f = 3 ρ 2 sin ϕ ρ ̂ ̲ + ρ 2 cos ϕ ϕ ̂ ̲ .

  2. f = ρ 3 sin ϕ = ρ 2 ρ sin ϕ = ( x 2 + y 2 ) y = x 2 y + y 3 so ̲ f = 2 x y i ̲ + ( x 2 + 3 y 2 ) j ̲ .

    Using cylindrical polar coordinates, from 1. we have ̲ f = 3 ρ 2 sin ϕ ρ ̂ ̲ + ρ 3 cos ϕ ϕ ̂ ̲ = 3 ρ 2 sin ϕ ( cos ϕ i ̲ + sin ϕ j ̲ ) + ρ 2 cos ϕ ( sin ϕ i ̲ + cos ϕ j ̲ ) = 3 ρ 2 sin ϕ cos ϕ ρ 2 sin ϕ cos ϕ i ̲ + 3 ρ 2 sin 2 ϕ + ρ 2 cos 2 ϕ j ̲ = 2 ρ 2 sin ϕ cos ϕ i ̲ + 3 ρ 2 sin 2 ϕ + ρ 2 cos 2 ϕ j ̲ = 2 x y i ̲ + ( 3 y 2 + x 2 ) j ̲

    So the results using Cartesian and cylindrical polar coordinates are consistent.

Example 22

Find ̲ F ̲ for F ̲ = F ρ ρ ̂ ̲ + F ϕ ϕ ̂ ̲ + F z ̲ = ρ 3 ρ ̂ ̲ + ρ z ϕ ̂ ̲ + ρ z sin ϕ ̲ . Show that the results are consistent with those found using Cartesian coordinates.

Solution

Here, F ρ = ρ 3 , F ϕ = ρ z and F z = ρ z sin ϕ so

̲ F ̲ = 1 ρ ρ ( ρ F ρ ) + ϕ ( F ϕ ) + z ( ρ F z ) = 1 ρ ρ ( ρ 4 ) + ϕ ( ρ z ) + z ( ρ 2 z sin ϕ ) = 1 ρ 4 ρ 3 + 0 + ρ 2 sin ϕ = 4 ρ 2 + ρ sin ϕ

Converting to Cartesian coordinates,

F ̲ = F ρ ρ ̂ ̲ + F ϕ ϕ ̂ ̲ + F z ̲ = ρ 3 ρ ̂ ̲ + ρ z ϕ ̂ ̲ + ρ z sin ϕ ̲ = ρ 3 ( cos ϕ i ̲ + sin ϕ j ̲ ) + ρ z ( sin ϕ i ̲ + cos ϕ j ̲ ) + ρ z sin ϕ k ̲ = ( ρ 3 cos ϕ ρ z sin ϕ ) i ̲ + ( ρ 3 sin ϕ + ρ z cos ϕ ) + ρ z k ̲ = ρ 2 ( ρ cos ϕ ) ρ sin ϕ z i ̲ + ρ 2 ( ρ sin ϕ ) + ρ cos ϕ z j ̲ + ρ sin ϕ z k ̲ = ( x 2 + y 2 ) x y z i ̲ + ( x 2 + y 2 ) y + x z j ̲ + y z k ̲ = ( x 3 + x y 2 y z ) i ̲ + ( x 2 y + y 3 + x z ) j ̲ + y z k ̲

So

̲ F ̲ = x ( x 3 + x y 2 y z ) + y ( x 2 y + y 3 + x z ) + z ( y z ) = ( 3 x 2 + y 2 ) + ( x 2 + 3 y 2 ) + y = 4 x 2 + 4 y 2 + y = 4 ( x 2 + y 2 ) + y = 4 ρ 2 + ρ sin ϕ

So ̲ F ̲ is the same in both coordinate systems.

Example 23

Find ̲ × F ̲ for F ̲ = ρ 2 ρ ̂ ̲ + z sin ϕ ϕ ̂ ̲ + 2 z cos ϕ ̲ .

Solution

̲ × F ̲ = 1 ρ ρ ̂ ̲ ρ ϕ ̂ ̲ ̲ ρ ϕ z F ρ ρ F ϕ F z = 1 ρ ρ ̂ ̲ ρ ϕ ̂ ̲ ̲ ρ ϕ z ρ 2 ρ z sin ϕ 2 z cos ϕ = 1 ρ ρ ̂ ̲ ϕ 2 z cos ϕ z ρ z sin ϕ + ρ ϕ ̂ ̲ z ρ 2 ρ 2 z cos ϕ + ̲ ρ ρ z sin ϕ ϕ ρ 2 = 1 ρ ρ ̂ ̲ ( 2 z sin ϕ ρ sin ϕ ) + ρ ϕ ̂ ̲ ( 0 ) + ̲ ( z sin ϕ ) = ( 2 z sin ϕ + sin ϕ ) ρ ρ ̂ ̲ + z sin ϕ ρ ̲