Introduction
If a charge,
q
, is moved through an electric field,
E
̲
, from
A
to
B
, then the work required is given by the line integral
W
A
B
=
−
q
∫
A
B
E
̲
⋅
d
l
̲
Problem in words
Compare the work done in moving a charge through the electric field around a point charge in a vacuum via two different paths.
Mathematical statement of problem
An electric field
E
̲
is given by
E
̲
=
Q
4
π
ε
0
r
2
r
̂
̲
=
Q
4
π
ε
0
(
x
2
+
y
2
+
z
2
)
×
x
i
̲
+
y
j
̲
+
z
k
̲
x
2
+
y
2
+
z
2
=
Q
(
x
i
̲
+
y
j
̲
+
z
k
̲
)
4
π
ε
0
(
x
2
+
y
2
+
z
2
)
3
2
where
r
̲
is the position vector with magnitude
r
and unit vector
r
̲
̂
, and
1
4
π
ϵ
0
is a combination of constants of proportionality, where
ϵ
0
=
1
0
−
9
∕
36
π
F m
−
1
.
Given that
Q
=
1
0
−
8
C, find the work done in bringing a charge of
q
=
1
0
−
10
C from the point
A
=
(
10
,
10
,
0
)
to the point
B
=
(
1
,
1
,
0
)
(where the dimensions are in metres)
by the direct straight line
y
=
x
,
z
=
0
by the straight line pair via
C
=
(
10
,
1
,
0
)
Figure 4:
The path comprises two straight lines from
A
=
(
10
,
10
,
0
)
to
B
=
(
1
,
1
,
0
)
via
C
=
(
10
,
1
,
0
)
(see Figure 4).
Mathematical analysis
Here
q
∕
(
4
π
ε
0
)
= 90 so
E
̲
=
90
[
x
i
̲
+
y
j
̲
]
(
x
2
+
y
2
)
3
2
as
z
=
0
over the region of interest. The work done
W
A
B
=
−
q
∫
A
B
E
̲
⋅
d
l
̲
=
−
1
0
−
10
∫
A
B
90
(
x
2
+
y
2
)
3
2
[
x
i
̲
+
y
j
̲
]
⋅
[
d
x
i
̲
+
d
y
j
̲
]
Using
y
=
x
,
d
y
=
d
x
W
A
B
=
−
1
0
−
10
∫
x
=
10
1
90
(
2
x
2
)
3
2
{
x
d
x
+
x
d
x
}
=
−
1
0
−
10
∫
10
1
90
(
2
2
)
x
−
3
2
x
d
x
=
90
×
−
1
0
−
10
2
∫
10
1
x
−
2
d
x
=
9
×
−
1
0
−
9
2
−
x
−
1
10
1
=
9
×
1
0
−
9
2
x
−
1
10
1
=
9
×
1
0
−
9
2
1
−
0.1
=
5.73
×
1
0
−
9
J
The first part of the path is
A
to
C
where
x
=
10
,
d
x
=
0
and
y
goes from 10 to 1.
W
A
C
=
−
Q
∫
A
C
E
̲
⋅
d
l
̲
=
−
1
0
−
10
∫
y
=
10
1
90
(
100
+
y
2
)
3
2
[
x
i
̲
+
y
j
̲
]
⋅
[
0
i
̲
+
d
y
j
̲
]
=
−
1
0
−
10
∫
10
1
90
y
d
y
(
100
+
y
2
)
3
2
=
−
1
0
−
10
∫
u
=
200
101
45
d
u
u
3
2
substituting
u
=
100
+
y
2
,
d
u
=
2
y
d
y
=
−
45
×
1
0
−
10
∫
200
101
u
−
3
2
d
u
=
−
45
×
1
0
−
10
−
2
u
−
1
2
200
101
=
45
×
1
0
−
10
2
101
−
2
200
=
2.59
×
1
0
−
10
J
The second part is
C
to
B
, where
y
=
1
,
d
y
=
0
and
x
goes from 10 to 1.
W
C
B
=
−
1
0
−
10
∫
x
=
10
1
90
(
x
2
+
1
)
3
2
[
x
i
̲
+
y
j
̲
]
⋅
[
d
x
i
̲
+
0
j
̲
]
=
−
1
0
−
10
∫
10
1
90
x
d
x
(
x
2
+
1
)
3
2
=
−
1
0
−
10
∫
u
=
101
2
45
d
u
u
3
2
substituting
u
=
x
2
+
1
,
d
u
=
2
x
d
x
=
−
45
×
1
0
−
10
∫
101
2
u
−
3
2
d
u
=
−
45
×
1
0
−
10
−
2
u
−
1
2
101
2
=
45
×
1
0
−
10
2
2
−
2
101
=
5.468
×
1
0
−
9
J
The sum of the two components
W
A
C
and
W
C
B
is
5.73
×
1
0
−
9
J. Therefore the work done over the two routes is identical.
Interpretation
In fact, the work done is independent of the route taken as the electric field
E
̲
around a point charge in a vacuum is a
conservative
field.
Show that
I
=
∫
(
0
,
0
)
(
2
,
1
)
(
2
x
y
+
1
)
d
x
+
(
x
2
−
2
y
)
d
y
is independent of the path taken.
Find
I
using property P1.
Find
I
using property P4.
Find
I
=
∮
C
(
2
x
y
+
1
)
d
x
+
(
x
2
−
2
y
)
d
y
where
C
is
the circle
x
2
+
y
2
=
1
the square with vertices
(
0
,
0
)
,
(
1
,
0
)
,
(
1
,
1
)
,
(
0
,
1
)
.
The integral
I
=
∫
(
0
,
0
)
(
2
,
1
)
(
2
x
y
+
1
)
d
x
+
(
x
2
−
2
y
)
d
y
may be re-written
∫
C
F
̲
⋅
d
r
̲
where
F
̲
=
(
2
x
y
+
1
)
i
̲
+
(
x
2
−
2
y
)
j
̲
.
Now
∇
̲
×
F
̲
=
i
̲
j
̲
k
̲
∂
∂
x
∂
∂
y
∂
∂
z
2
x
y
+
1
x
2
−
2
y
0
=
0
i
̲
+
0
j
̲
+
0
k
̲
=
0
̲
As
∇
̲
×
F
̲
=
0
̲
,
F
̲
is a conservative field and
I
is independent of the path taken between
(
0
,
0
)
and
(
2
,
1
)
.
As
I
is independent of the path taken from
(
0
,
0
)
to
(
2
,
1
)
, it can be evaluated along
any
such path. One possibility is the straight line
y
=
1
2
x
. On this line,
d
y
=
1
2
d
x
. The integral
I
becomes
I
=
∫
(
0
,
0
)
(
2
,
1
)
(
2
x
y
+
1
)
d
x
+
(
x
2
−
2
y
)
d
y
=
∫
x
=
0
2
(
2
x
×
1
2
x
+
1
)
d
x
+
(
x
2
−
4
x
)
1
2
d
x
=
∫
0
2
(
3
2
x
2
−
1
2
x
+
1
)
d
x
=
1
2
x
3
−
1
4
x
2
+
x
0
2
=
4
−
1
+
2
−
0
=
5
If
F
̲
=
∇
̲
ϕ
then
∂
ϕ
∂
x
=
2
x
y
+
1
→
ϕ
=
x
2
y
+
x
+
f
(
y
)
∂
ϕ
∂
y
=
x
2
−
2
y
→
ϕ
=
x
2
y
−
y
2
+
g
(
x
)
→
ϕ
=
x
2
y
+
x
−
y
2
+
C
.
These are consistent if
ϕ
=
x
2
y
+
x
−
y
2
(plus a constant which may be omitted since it cancels).
So
I
=
ϕ
(
2
,
1
)
−
ϕ
(
0
,
0
)
=
(
4
+
2
−
1
)
−
0
=
5
As
F
is a conservative field, all integrals around a closed contour are zero.
Determine whether the following vector fields are conservative
F
̲
=
(
x
−
y
)
i
̲
+
(
x
+
y
)
j
̲
F
̲
=
3
x
2
y
2
i
̲
+
(
2
x
3
y
−
1
)
j
̲
F
̲
=
2
x
i
̲
+
(
x
z
−
2
)
j
̲
+
x
y
k
̲
F
̲
=
x
2
z
i
̲
+
y
2
z
j
̲
+
1
3
(
x
3
+
y
3
)
k
̲
Consider the integral
∫
C
F
̲
⋅
d
r
̲
with
F
̲
=
3
x
2
y
2
i
̲
+
(
2
x
3
y
−
1
)
j
̲
. From Exercise 1(b)
F
̲
is a conservative vector field. Find a scalar field
ϕ
so that
∇
̲
ϕ
=
F
̲
. Hence use P4 to evaluate the integral
∫
C
F
̲
⋅
d
r
̲
where
C
is an integral with start-point
(
0
,
0
)
and end point
(
1
,
4
)
.
For the following conservative vector fields
F
̲
, find a scalar field
ϕ
such that
∇
̲
ϕ
=
F
̲
and hence evaluate the
I
=
∫
C
F
̲
⋅
d
r
̲
for the contours
C
indicated.
F
̲
=
(
4
x
3
y
−
2
x
)
i
̲
+
(
x
4
−
2
y
)
j
̲
; any path from
(
0
,
0
)
to
(
2
,
1
)
.
F
̲
=
(
e
x
+
y
3
)
i
̲
+
(
3
x
y
2
)
j
̲
; closed path starting from any point on the circle
x
2
+
y
2
=
1
.
F
̲
=
(
y
2
+
sin
z
)
i
̲
+
2
x
y
j
̲
+
x
cos
z
k
̲
; any path from
(
1
,
1
,
0
)
to
(
2
,
0
,
π
)
.
F
̲
=
1
x
i
̲
+
4
y
3
z
2
j
̲
+
2
y
4
z
k
̲
; any path from
(
1
,
1
,
1
)
to
(
1
,
2
,
3
)
.
Answer
No,
Yes,
No,
Yes
x
3
y
2
−
y
+
C
,
12
x
4
y
−
x
2
−
y
2
,
11
;
e
x
+
x
y
3
,
0
;
x
y
2
+
x
sin
z
,
−
1
;
ln
x
+
y
4
z
2
,
143