5 Vector line integrals

It is also possible to form the less commonly used integrals C f ( x , y , z ) d r ̲ and C F ̲ ( x , y , z ) × d r ̲ . Each of these integrals evaluates to a vector.

Remembering that d r ̲ = d x i ̲ + d y j ̲ + d z k ̲ , an integral of the form C f ( x , y , z ) d r ̲ becomes

C f ( x , y , z ) d x i ̲ + C f ( x , y , z ) d y j ̲ + C f ( x , y , z ) d z k ̲ . The first term can be evaluated by expressing y and z in terms of x . Similarly the second and third terms can be evaluated by expressing all terms as functions of y and z respectively. Alternatively, all variables can be expressed in terms of a parameter t . If an integral is two-dimensional, the term in z will be absent.

Example 12

Evaluate the integral C x y 2 d r ̲ where C represents the contour y = x 2 from ( 0 , 0 ) to ( 1 , 1 ) .

Solution

This is a two-dimensional integral so the term in z will be absent.

I = C x y 2 d r ̲ = C x y 2 ( d x i ̲ + d y j ̲ ) = C x y 2 d x i ̲ + C x y 2 d y j ̲ = x = 0 1 x ( x 2 ) 2 d x i ̲ + y = 0 1 y 1 2 y 2 d y j ̲ = 0 1 x 5 d x i ̲ + 0 1 y 5 2 d y j ̲ = 1 6 x 6 0 1 i ̲ + 2 7 x 7 2 0 1 j ̲ = 1 6 i ̲ + 2 7 j ̲
Example 13

Find I = C x d r ̲ for the contour C given parametrically by x = cos t , y = sin t , z = t π starting at t = 0 and going to t = 2 π , i.e. the contour starts at ( 1 , 0 , π ) and finishes at ( 1 , 0 , π ) .

Solution

The integral becomes C x ( d x i ̲ + d y j ̲ + d z k ̲ ) .

Now, x = cos t , y = sin t , z = t π so d x = sin t d t , d y = cos t d t and d z = d t . So

I = 0 2 π cos t ( sin t d t i ̲ + cos t d t j ̲ + d t k ̲ ) = 0 2 π cos t sin t d t i ̲ + 0 2 π cos 2 t d t j ̲ + 0 2 π cos t d t k ̲ = 1 2 0 2 π sin 2 t d t i ̲ + 1 2 0 2 π ( 1 + cos 2 t ) d t j ̲ + sin t 0 2 π k ̲ = 1 4 cos 2 t 0 2 π i ̲ + 1 2 t + 1 2 sin 2 t 0 2 π j ̲ + 0 k ̲ = 0 i ̲ + π j ̲ = π j ̲





Integrals of the form C F ̲ × d r ̲ can be evaluated as follows. The vector field F ̲ = F 1 i ̲ + F 2 j ̲ + F 3 k ̲ and d r ̲ = d x i ̲ + d y j ̲ + d z k ̲ so

F ̲ × d r ̲ = i ̲ j ̲ k ̲ F 1 F 2 F 3 d x d y d z = ( F 2 d z F 3 d y ) i ̲ + ( F 3 d x F 1 d z ) j ̲ + ( F 1 d y F 2 d x ) k ̲ = ( F 3 j ̲ F 2 k ̲ ) d x + ( F 1 k ̲ F 3 i ̲ ) d y + ( F 2 i ̲ F 1 j ̲ ) d z

There are a maximum of six terms involved in one such integral; the exact details may dictate which form to use.

Example 14

Evaluate the integral C ( x 2 i ̲ + 3 x y j ̲ ) × d r ̲ where C represents the curve y = 2 x 2 from ( 0 , 0 ) to ( 1 , 2 ) .

Solution

Note that the z component of F ̲ and d r ̲ are both zero.

So F ̲ × d r ̲ = i ̲ j ̲ k ̲ x 2 3 x y 0 d x d y 0 = ( x 2 d y 3 x y d x ) k ̲

and C ( x 2 i ̲ + 3 x y j ̲ ) × d r ̲ = C ( x 2 d y 3 x y d x ) k ̲

Now, on C , y = 2 x 2 so d y = 4 x d x and

C ( x 2 i ̲ + 3 x y j ̲ ) × d r ̲ = C { x 2 d y 3 x y d x } k ̲ = x = 0 1 x 2 × 4 x d x 3 x × 2 x 2 d x k ̲ = 0 1 2 x 3 d x k ̲ = 1 2 x 4 0 1 k ̲ = 1 2 k ̲