2 A formula for finding the scalar product

We can use the results summarized in Key Point 10 to obtain a formula for finding a scalar product when the vectors are given in Cartesian form. We consider vectors in the x y plane. Suppose a ̲ = a 1 i ̲ + a 2 j ̲ and b ̲ = b 1 i ̲ + b 2 j ̲ . Then

a ̲ b ̲ = ( a 1 i ̲ + a 2 j ̲ ) ( b 1 i ̲ + b 2 j ̲ ) = a 1 i ̲ ( b 1 i ̲ + b 2 j ̲ ) + a 2 j ̲ ( b 1 i ̲ + b 2 j ̲ ) = a 1 b 1 i ̲ i ̲ + a 1 b 2 i ̲ j ̲ + a 2 b 1 j ̲ i ̲ + a 2 b 2 j ̲ j ̲

Using the results in Key Point 10 we can simplify this to give the following formula:

Key Point 12
If a ̲ = a 1 i ̲ + a 2 j ̲  and  b ̲ = b 1 i ̲ + b 2 j ̲  then 
a ̲ b ̲ = a 1 b 1 + a 2 b 2

Thus to find the scalar product of two vectors their i ̲ components are multiplied together, their j ̲ components are multiplied together and the results are added.

Example 11

If a ̲ = 7 i ̲ + 8 j ̲ and b ̲ = 5 i ̲ 2 j ̲ , find the scalar product a ̲ b ̲ .

Solution

We use Key Point 12:

a ̲ b ̲ = ( 7 i ̲ + 8 j ̲ ) ( 5 i ̲ 2 j ̲ ) = ( 7 ) ( 5 ) + ( 8 ) ( 2 ) = 35 16 = 19

The formula readily generalises to vectors in three dimensions as follows:

Key Point 13
If a ̲ = a 1 i ̲ + a 2 j ̲ + a 3 k ̲  and  b ̲ = b 1 i ̲ + b 2 j ̲ + b 3 k ̲  then 
a ̲ b ̲ = a 1 b 1 + a 2 b 2 + a 3 b 3
Example 12

If a ̲ = 5 i ̲ + 3 j ̲ 2 k ̲ and b ̲ = 8 i ̲ 9 j ̲ + 11 k ̲ , find a ̲ b ̲ .

Solution

We use the formula in Key Point 13:

a ̲ b ̲ = ( 5 ) ( 8 ) + ( 3 ) ( 9 ) + ( 2 ) ( 11 ) = 40 27 22 = 9

Note again that the result is a scalar: there are no i ̲ ’s, j ̲ ’s, or k ̲ ’s in the answer.

Task!

If p ̲ = 4 i ̲ 3 j ̲ + 7 k ̲ and q ̲ = 6 i ̲ j ̲ + 2 k ̲ , find p ̲ q ̲ .

Use Key Point 13:

41

Task!

If r ̲ = 3 i ̲ + 2 j ̲ + 9 k ̲ find r ̲ r ̲ . Show that this is the same as r ̲ 2 .

r ̲ r ̲ = ( 3 i ̲ + 2 j ̲ + 9 k ̲ ) ( 3 i ̲ + 2 j ̲ + 9 k ̲ ) = 3 i ̲ 3 i ̲ + 3 i ̲ 2 j ̲ + = 9 + 0 + = 94 .

r ̲ = 9 + 4 + 81 = 94 , hence r ̲ 2 = r ̲ r ̲ .

The above result is generally true:

Key Point 14

For any vector r ̲ , r ̲ 2 = r ̲ r ̲